Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Development of an air cleaning system for dissolving high explosives from nuclear warheads

Conference ·
OSTI ID:568104
; ; ;  [1]
  1. Lawrence Livermore National Lab., CA (United States)

The Department of Energy (DOE) has a major effort underway in dismantling nuclear weapons. In support of this effort we have been developing a workstation for removing the high explosive (HE) from nuclear warheads using hot sprays of dimethyl sulfoxide (DMSO) solvent to dissolve the HE. An important component of the workstation is the air cleaning system that is used to contain DMSO aerosols and vapor and radioactive aerosols. The air cleaning system consists of a condenser to liquefy the hot DMSO vapor, a demister pad to remove most of the DMSO aerosols, a high efficiency particulate air (HEPA) filter to remove the remaining aerosols, an activated carbon filter to remove the DMSO vapor, and a final HEPA filter to meet the redundancy requirement for HEPA filters in radioactive applications. The demister pad is a 4{double_prime} thick mat of glass and steel fibers and was selected after conducting screening tests on promising candidates. We also conducted screening tests on various activated carbons and found that all had a similar performance. The carbon breakthrough curves were fitted to a modified Wheeler`s equation and gave excellent predictions for the effect of different flow rates. After all of the components were assembled, we ran a series of performance tests on the components and system to determine the particle capture efficiency as a function of size for dioctyl sebacate (DOS) and DMSO aerosols using laser particle counters and filter samples. The pad had an efficiency greater than 990% for 0.1 {mu}m DMSO particles. Test results on the prototype carbon filter showed only 70% efficiency, instead of the 99.9% in small scale laboratory tests. Thus further work will be required to develop the prototype carbon filter. 7 refs., 18 figs., 10 tabs.

Research Organization:
Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.; USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Guidance; Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research; International Society of Nuclear Air Treatment Technologies, Inc., Batavia, OH (United States)
OSTI ID:
568104
Report Number(s):
NUREG/CP--0153; CONF-960715--; ON: TI97008959
Country of Publication:
United States
Language:
English