skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gradients in silicic magma chambers: Implications for lithospheric magmatism

Journal Article · · J. Geophys. Res.; (United States)

Every large eruption of nonbasaltic magma taps a magma reservoir that is thermally and compositionally zoned. Most small eruptions also tap parts of heterogeneous and evolving magmatic systems. Several kinds of compositionally zoned ash flow tuffs provide examples of preeruptive gradients in T and f2, in chemical and isotopic composition, and in the variety, abundance, and composition of phenocrysts. Such gradients help to constrain the mechanisms of magmatic differentiation operating in each system. Roofward decreases in both T and phenocryst content suggest water concentration gradients in magma chambers. Wide compositional gaps are common features of large eruptions, proving the existence of such gaps in a variety of magmatic systems. Nearly all magmatic systems are 'fundamentally basaltic' in the sense that mantle-derived magmas supply heat and mass to crustal systems that evolve a variety of compositional ranges. Feedback between crustal melting and interception of basaltic intrusions focuses and amplifies magmatic anomalies, suppresses basaltic volcanism, produces and sustains crustal magma chambers, and sometimes culminates in large-scale diapirism. Degassing of basalt crystallizing in the roots of these systems provides a flux of He, CO/sub 2/, S, halogens, and other components, some of which may influence chemical transport in the overlying, more silicic zones. Basaltic magmas become andesitic by concurrent fractionation and assimilation of partial melts over a large depth range during protracted upward percolation in a plexus of crustal conduits. Zonation in the andesitic-dacitic compositional range develops subsequently within magma chambers, primarily by crystal fractionation. Some dacitic and rhyolitic liquids may separate from less-silicic parents by means of ascending boundary layers along the walls of convecting magma chambers.

Research Organization:
U.S. Geological Survey, Menlo Park, California 94025
OSTI ID:
5671995
Journal Information:
J. Geophys. Res.; (United States), Vol. 86:B11
Country of Publication:
United States
Language:
English