skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Alterations in Fc[epsilon]RI induced by protoporphyrin plus long-wavelength ultraviolet light in mouse bone marrow-derived mast cells

Journal Article · · Journal of Immunology; (United States)
OSTI ID:5671779
; ;  [1];  [2]
  1. Univ. of California, San Diego, CA (United States)
  2. Scripps Research Institutes, La Jolla, CA (United States)

As previously reported, protoporphyrin plus long-wavelength UV light (PP/UVA) inhibits IgE-mediated degranulation of mouse bone marrow-derived mast cells, as assessed by measurement of the release of [beta]-hexosaminidase. This inhibitory effect was seen with cells sensitized with IgE either before or after PP/UVA treatment (57.8 and 55.35 inhibition, respectively). PP/UVA did not dissociate IgE already bound to cells as assessed either by measure of release of bound [sup 125]I-IgE or by flow cytometric analysis. Results from immunoadsorption followed by SDS-PAGE analysis suggested that PP/UVA treatment may cause stable conjugation of IgE to its receptor. In unsensitized cells, PP/UVA did not cause conjugation of the unoccupied Fc[epsilon]RI to other proteins in the plasma membrane. Nevertheless, Scatchard analysis revealed that PP/UVA decreased the number of Fc[epsilon]Ri per cell by 37% (0.95 [times] 10[sup 5] vs 1.51 [times] 10[sup 5] cell), whereas affinity of the receptor for IgE was comparable between PP/UVA-treated and untreated cells (3.40 nM vs 3.27 nM). Flow cytometric analysis also confirmed the decrease in Fc[epsilon]RI number in PP/UVA-treated unsensitized mouse bone marrow-derived mast cells. Although 84% of PP/UVA-treated and 82% of untreated cells expressed positive fluorescence when stained with FITC-conjugated IgE, fluorescence intensity was reduced by 40% after PP/UVA treatment. The authors conclude that PP/UVA alters the conformational structure and/or number of Fc[epsilon]RI expressed on the mast cell surface. This effect could potentially explain the ability of PP/UVA to inhibit mast cell secretory function and may be related to an ability of PP/UVA to alter the properties of the plasma membrane. 29 refs., 8 figs.

OSTI ID:
5671779
Journal Information:
Journal of Immunology; (United States), Vol. 151:2; ISSN 0022-1767
Country of Publication:
United States
Language:
English