Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Sequential degradation of chlorophenols in anaerobic freshwater sediments

Thesis/Dissertation ·
OSTI ID:5670900
Anaerobic degradation of 2,4-dichlorophenol and 3-chloro-4-hydroxybenzoate in the freshwater sediment samples was investigated. Studies of the enrichment cultures and a pure culture, adaptation times, correlation of substrate degradation and product accumulation, maximal observed transformation rates, temperature and pH ranges for the transformation provided the bases for the proposed sequential pathway for degradation of 2,4-dichlorophenol. At least six different bacterial species were required to catalyze following reactions: (1) the dechlorination of 2,4-dichlorophenol; (2) the dechlorination of 4-chlorophenol; (3) the para-carboxylation of phenol; (4) the reductive dehydroxylation of para-hydroxybenzoate; (5) the degradation of benzoate to acetate, H[sub 2] and CO[sub 2]; and (6) the conversion of H[sub 2]/CO[sub 2] and acetate to methane. The rate limiting reaction in the pathway was the dechlorination of 4-chlorophenol. A new species, Clostridium [open quote]hydroxybenzoicum[close quote], isolated from the enrichment, catalyzed the carboxylation of phenol at the para-position to 4-hydroxybenzoate by a reversible decarboxylation/carboxylation enzyme. 3,4-Dihydroxybenzoate was decarboxylated by a second enzyme in this organism. The activities were biotin and ATP independent. The bacterium, in a pure culture, did not benefit from the decarboxylation reaction but apparently it benefited in the phenol-degrading enrichment culture. Of 46 strains (42 species) tested, only three exhibited hydroxybenzoate decarboxylation activities:Clostridium thermoaceticum, Clostridium thermoautotrophicum,Clostridium scatologenes. The history of the sediment determined the first step in the anaerobic degradation.
Research Organization:
Georgia Univ., Athens, GA (United States)
OSTI ID:
5670900
Country of Publication:
United States
Language:
English