skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The effects of CdCl sub 2 on the electronic properties of molecular-beam epitaxially grown CdTe/CdS heterojunction solar cells

Journal Article · · Journal of Applied Physics; (USA)
DOI:https://doi.org/10.1063/1.349652· OSTI ID:5668820
; ; ;  [1]
  1. School of Electrical Engineering and Microelectronics Research Center, Georgia Institute of Technology, Atlanta, Georgia 30332 (US)

Significant improvements in CdTe/CdS solar cell efficiency are commonly observed as a result of a postdeposition CdCl{sub 2} dip followed by a 400 {degree}C heat treatment during cell processing which increases CdTe grain size. In this paper, we investigate the electronic mechanisms responsible for CdCl{sub 2}-induced improvement in cell performance along with possible performance-limiting defects resulting from this process in molecular-beam epitaxy-grown polycrystalline CdTe/CdS solar cells. Current density-voltage-temperature ({ital J}-{ital V}-{ital T}) analysis revealed that the CdCl{sub 2} treatment changes the dominant current transport mechanism from interface recombination/tunneling to depletion region recombination, suggesting a decrease in the density and dominance of interface states due to the CdCl{sub 2} treatment. It is shown that the change in transport mechanism is associated with (a) an increase in heterojunction barrier height from 0.56 to 0.85 eV, (b) a decrease in dark leakage current from 4.7{times}10{sup {minus}7} A/cm{sup 2} to 2.6{times}10{sup {minus}9} A/cm{sup 2} and, (c) an increase in cell {ital V}{sub oc} from 385 to 720 mV. The CdCl{sub 2} also improved the optical response of the cell. Substantial increases in the surface photovoltage and quantum efficiency accompanied by a decrease in the bias dependence of the spectral response in the CdCl{sub 2}-treated structures indicate that the CdCl{sub 2} treatment improves carrier collection from the bulk as well as across the heterointerface. However, deep level transient spectroscopy measurements detected a hole trap within the CdTe depletion region of the CdCl{sub 2}-treated devices at {ital E}{sub {ital v}} + 0.64 eV which is attributed to the formation of {ital V}{sub Cd}-related defects during the annealing process after the CdCl{sub 2} dip.

OSTI ID:
5668820
Journal Information:
Journal of Applied Physics; (USA), Vol. 70:2; ISSN 0021-8979
Country of Publication:
United States
Language:
English