skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multistage neural network model for dynamic scene analysis

Miscellaneous ·
OSTI ID:5659765

This research is concerned with dynamic scene analysis. The goal of scene analysis is to recognize objects and have a meaningful interpretation of the scene from which images are obtained. The task of the dynamic scene analysis process generally consists of region identification, motion analysis and object recognition. The objective of this research is to develop clustering algorithms using neural network approach and to investigate a multi-stage neural network model for region identification and motion analysis. The research is separated into three parts. First, a clustering algorithm using Kohonens' self-organizing feature map network is developed to be capable of generating continuous membership valued outputs. A newly developed version of the updating algorithm of the network is introduced to achieve a high degree of parallelism. A neural network model for the fuzzy c-means algorithm is proposed. In the second part, the parallel algorithms of a neural network model for clustering using the self-organizing feature maps approach and a neural network that models the fuzzy c-means algorithm are modified for implementation on a distributed memory parallel architecture. In the third part, supervised and unsupervised neural network models for motion analysis are investigated. For a supervised neural network, a three layer perceptron network is trained by a series of images to recognize the movement of the objects. For the unsupervised neural network, a self-organizing feature mapping network will learn to recognize the movement of the objects without an explicit training phase.

Research Organization:
South Carolina Univ., Columbia, SC (United States)
OSTI ID:
5659765
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English