Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metal alloys

Journal Article · · Phys. Rev. B: Condens. Matter; (United States)

Superconducting upper critical fields H/sub c/2(T), transition temperatures T/sub c/, and normal-state electrical resistivities rho/sub n/ have been measured in the amorphous transition-metal alloy series Zr/sub 1-z/Co/sub x/, Zr/sub 1-x/Ni/sub x/, (Zr/sub 1-x/Ti/sub x/)/sub 0.78/Ni/sub 0.22/, and (Zr/sub 1-x/Nb/sub x/)/sub 0.78/Ni/sub 0.22/. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display T/sub c/ = 2.1--3.8 K, rho/sub n/ = 159--190 ..mu cap omega.. cm, and Vertical Bar(dH/sub c/2/dT)cVertical Bar = 28--36 kG/K. These imply electron mean free paths lroughly-equal2--6 A, zero-temperature Ginzburg-Landau coherence distances xi/sub G/0roughly-equal50--70 A, penetration depths lambda/sub G/0roughly-equal(7--10) x 10/sup 3/ A, and extremely high dirtiness parameters xi/sub 0//lroughly-equal300--1300. All alloys display H/sub c/2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time tau/sub so/. This is in contrast to the anomalously elevated H/sub c/2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-tau/sub so/ fits to WHHM theory obtained by others, for various amorphous alloys.

Research Organization:
Department of Physics, Indiana University, Bloomington, Indiana 47405
OSTI ID:
5655635
Journal Information:
Phys. Rev. B: Condens. Matter; (United States), Journal Name: Phys. Rev. B: Condens. Matter; (United States) Vol. 28:3; ISSN PRBMD
Country of Publication:
United States
Language:
English