skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural investigations of GaN grown by low-pressure chemical vapor deposition on 6H{endash}SiC and Al{sub 2}O{sub 3} from GaCl{sub 3} and NH{sub 3}

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.365994· OSTI ID:565376
; ; ;  [1]; ;  [2];  [3]
  1. Physics Department E16, Technical University of Munich, D-85748 Garching (Germany)
  2. STM Group, Physics Department E16, Technical University of Munich, D-85748 Garching (Germany)
  3. Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

GaN films grown on (0001) 6H{endash}SiC and (0001) Al{sub 2}O{sub 3} substrates using low-pressure chemical vapor deposition with GaCl{sub 3} and NH{sub 3} as precursors are comparatively explored by optical, scanning tunneling, and transmission electron microscopy. Independent of the substrate material used, the surface of the GaN layers is covered by hexagonally shaped islands. For GaN on 6H{endash}SiC, the islands are larger in diameter ({approx}50 {mu}m) and rather uniformly distributed. An atomically flat interface is observed for GaN on Al{sub 2}O{sub 3} in contrast to GaN grown on 6H{endash}SiC, where the interface is characterized by large steps. For both substrates, faceted holes (named as pinholes) are observed in near-surface regions of the GaN layers occurring with a density of about 7{times}10{sup 8} cm{sup {minus}2}. No unequivocal correlation between the density of pinholes and the density of threading dislocations ({approx}1.6{times}10{sup 10} cm{sup {minus}2} for GaN/Al{sub 2}O{sub 3} and {approx}4{times}10{sup 9} cm{sup {minus}2} for GaN/6H{endash}SiC) can be found. Rather, different types of defects are identified to be correlated with the pinholes, implying a dislocation-independent mechanism for the pinhole formation. Despite the small lattice mismatch between GaN and 6H{endash}SiC, the pronounced original surface roughness of this substrate material is believed to account for both the marked interfacial roughness and the still existing high density of threading dislocations. {copyright} {ital 1997 American Institute of Physics.}

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
565376
Journal Information:
Journal of Applied Physics, Vol. 82, Issue 4; Other Information: PBD: Aug 1997
Country of Publication:
United States
Language:
English