Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

ac response of thin superconductors in the flux-creep regime

Journal Article · · Physical Review, B: Condensed Matter
 [1];  [2]
  1. Applied Superconductivity Center, University of Wisconsin, Madison, Wisconsin 53706 (United States)
  2. Max Planck Institute fuer Metallforschung, D-70506 Stuttgart (Germany)

We calculate both analytically and numerically the ac susceptibility {chi}({omega}) and the nonlinear electromagnetic response of thin superconductor strips and disks of constant thickness in a perpendicular time-dependent magnetic field B{sub a}(t)=B{sub 0}cos{omega}t, taking account of the strong nonlinearity of the voltage-current characteristics below the irreversibility line. We consider integral equations of nonlinear nonlocal flux diffusion for a wide class of thermally activated creep models. It is shown that thin superconductors, despite being fully in the critical state, exhibit a universal Meissner-like electromagnetic response in the dissipative flux-creep regime. The expression for the linear ac susceptibility during flux creep appears to be similar to the susceptibility of Ohmic conductors, but with the relaxation time constant replaced by the time t elapsed after flux creep has started. This result is independent of any material parameter or temperature or dc field. For {omega}t{gt}1, we obtain {chi}({omega}){approx}{minus}1+pln(qi{omega}t)/(i{omega}t), where p and q are constants. Above a critical ac amplitude B{sub 0}=B{sub l}, the local response of the electric field becomes nonlinear, and there are two distinctive nonlinear regimes at B{sub 0}{gt}B{sub l}, where B{sub l}{approximately}s(d/a){sup 1/2}B{sub p}, B{sub p} is a characteristic field of full flux penetration, s(T,B)={vert_bar}dlnj/dlnt{vert_bar} is the dimensionless flux-creep rate and d and a are the sample thickness and width, respectively. For B{sub l}{lt}B{sub 0}{lt}B{sub h}({omega}) the response of the electric field is strongly nonlinear but nonhysteretic, since the ac field B{sub a}(t) does not cause a periodic inversion of the critical state. As a result, the magnetic moment exhibits a Meissner-like {ital nondissipative} response, in stark contrast to the Bean model. (Abstract Truncated)

OSTI ID:
565307
Journal Information:
Physical Review, B: Condensed Matter, Journal Name: Physical Review, B: Condensed Matter Journal Issue: 18 Vol. 55; ISSN PRBMDO; ISSN 0163-1829
Country of Publication:
United States
Language:
English

Similar Records

Susceptibility of superconductor disks and rings with and without flux creep
Journal Article · Sun Jun 01 00:00:00 EDT 1997 · Physical Review, B: Condensed Matter · OSTI ID:509050

Power-law resistivity, magnetic relaxation and ac susceptibility
Conference · Fri Jul 01 00:00:00 EDT 1994 · OSTI ID:10175267

Electron temperature anisotropy instabilities: Whistler, electrostatic and z mode
Journal Article · Wed Sep 01 00:00:00 EDT 1999 · Journal of Geophysical Research · OSTI ID:688000