Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation
Journal Article
·
· Phys. Rev. Lett.; (United States)
We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact evaluation by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of freedom based on a simple linear stability analysis and mode-counting argument.
- Research Organization:
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 5639898
- Journal Information:
- Phys. Rev. Lett.; (United States), Journal Name: Phys. Rev. Lett.; (United States) Vol. 59:26; ISSN PRLTA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Finite dimensionality in the complex Ginzburg-Landau equation
Dynamics of perturbed wavetrain solutions to the Ginzburg-Landau equation
Dynamics on the attractor for the complex Ginzburg-Landau equation
Conference
·
Wed Dec 31 23:00:00 EST 1986
·
OSTI ID:5433963
Dynamics of perturbed wavetrain solutions to the Ginzburg-Landau equation
Thesis/Dissertation
·
Sat Dec 31 23:00:00 EST 1983
·
OSTI ID:5761670
Dynamics on the attractor for the complex Ginzburg-Landau equation
Technical Report
·
Mon Aug 01 00:00:00 EDT 1994
·
OSTI ID:10174640