skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sawtooth mixing of alpha particles in TFTR D-T plasmas

Conference ·
OSTI ID:563861
 [1]; ;  [2]
  1. A.F. Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation)
  2. Princeton Plasma Physics Physics Lab., Princeton, NJ (United States); and others

Radially resolved confined alpha particle energy and density distributions are routinely measured on TFTR using two diagnostics: PCX and {alpha}-CHERS. The Pellet Charge-eXchange (PCX) diagnostic uses the ablation cloud formed by an impurity pellet (Li or B) for neutralization of the alphas followed by analysis of the escaping helium neutrals. PCX detects deeply trapped alpha particles in the energy range 0.5 - 3.8 MeV. The {alpha}-CHERS technique, were the alpha signal is excited by charge-exchange between alphas and the deuterium atoms of one of the heating beams and appears as a wing on the He{sup +} 468.6 nm line, detects mainly passing alphas in the range of 0.15 - 0.7 MeV. Studies of alpha losses during DT experiments on TFTR have also been conducted using lost alpha detectors located on the walls of the plasma chamber. All of these diagnostics were used for investigating the influence of sawtooth crashes on alphas in high power D-T discharges in TFTR. Both PCX and {alpha}-CHERS measurements show a strong depletion of the alpha core density and transport of trapped alphas radially outwards well beyond q = 1 surface after a sawtooth crash. Lost alpha detectors measure bursts of alpha loss of the previously confined alphas (<1%). Thus, a sawtooth crash leads mainly to radial redistribution of the alphas rather than losses. For modeling of alpha sawtooth mixing, a code is used which is based on the conventional model of magnetic reconnection and the conservation of particles, energy and magnetic flux. The effect of the particle orbit averaged toroidal drift in a perturbed helical electric field generated by the crash has also been included in the code. It is shown that mixing of the passing alphas is dominated by the magnetic reconnection whereas trapped alphas are affected mainly by ExB drift.

Research Organization:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Organization:
USDOE Office of Energy Research, Washington, DC (United States)
DOE Contract Number:
AC02-76CH03073
OSTI ID:
563861
Report Number(s):
PPPL-CFP-3637; IAEA-CN-64/A2-2; CONF-961005-31; ON: DE97005293; TRN: 98:002261
Resource Relation:
Conference: 16. International Atomic Energy Agency (IAEA) international conference on plasma physics and controlled nuclear fusion research, Montreal (Canada), 7-11 Oct 1996; Other Information: PBD: 1996
Country of Publication:
United States
Language:
English