skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Substrate specificity of the Escherichia coli Fpg protein (Formamidopyrimidine - DNA glycosylase): Excision of purine lesions in DNA produced by ionizing radiation or photosensitization

Journal Article · · Biochemistry; (United States)
DOI:https://doi.org/10.1021/bi00116a016· OSTI ID:5611624
;  [1]; ;  [2]
  1. Inst. Gustave Roussy, Villejuif (France)
  2. National Inst. of Standards and Tech., Gaithersburg, MD (United States)

The authors have investigated the excision of a variety of modified bases from DNA by the Escherichia coli Fpg protein (formamidopyrimidine-DNA glycosylase). DNA used as a substrate was modified either by exposure to ionizing radiation or by photosensitization using visible light in the presence of methylene blue (MB). The technique of gas chromatography/mass spectrometry, which can unambiguously identify and quantitate pyrimidine- and purine-derived lesions in DNA, was used for analysis of hydrolyzed and derivatized DNA samples. Thirteen products resulting from pyrimidines and purines were detected in {gamma}-irradiated DNA, whereas only the formation of 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 8-hydroxyguanine (8-OH-Gua) was observed in visible light/MB-treated DNA. Analysis of {gamma}-irradiated DNA after incubation with the Fpg protein followed by precipitation revealed that the Fpg protein significantly excised 4,6-diamino-5-formamidopyrimidine (FapyAde), FapyGua, and 8-OH-Gua. The excision of a small but detectable amount of 8-hydroxyadenine was also observed. The results suggest that one of the biological roles of the Fpg protein, which is present in bacteria as well as in mammalian cells, is the repair of DNA damage caused by free radicals or by other oxygen-derived species such as singlet oxygen. The Fpg protein appears to be specific for recognition of imidazole ring opened purines and 8-hydroxypurines in DNA and may complement pyrimidine-specific enzymes in repair of DNA damage in vivo.

OSTI ID:
5611624
Journal Information:
Biochemistry; (United States), Vol. 31:1; ISSN 0006-2960
Country of Publication:
United States
Language:
English