skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thick-section weldments in 21-6-9 and 316LN stainless steel for fusion energy applications

Conference ·
OSTI ID:5586135

The Burning Plasma Experiment (BPX), formerly known as the Compact Ignition Tokomak, will be a major advance in the design of a fusion reactor. The successful construction of fusion reactors will require extensive welding of thick-section stainless steel plates. Severe service conditions will be experienced by the structure. Operating temperatures will range from room temperature (300 K) to liquid nitrogen temperature (77 K), and perhaps even lower. The structure will be highly stressed, and subject to sudden impact loads if plasma disruptions occur. This demands a combination of high strength and high toughness from the weldments. Significant portions of the welding will be done in the field, so preweld and postweld heat treatments will be difficult. The thick sections to be welded will require a high deposition rate process, and will result in significant residual stresses in the materials. Inspection of these thick sections in complex geometries will be very difficult. All of these constraints make it essential that the welding procedures and alloys be well understood, and the mechanical properties of the welds and their heat-affected zones must be adequately characterized. The candidate alloy for structural applications in the BPX such as the magnet cases was initially selected as 21-6-9 austenitic stainless steel, and later changed to 316LN stainless steel. This study examined several possible filler materials for thick-section (25 to 50 mm) weldments in these two materials. The tensile and Charpy V-notch properties were measured at room temperature and 77 K. The fracture toughness was measured for promising materials.

Research Organization:
Oak Ridge National Lab., TN (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
5586135
Report Number(s):
CONF-910635-8; ON: DE91015307
Resource Relation:
Conference: Cryogenic engineering conference and international cryogenic materials conference, Huntsville, AL (United States), 11-14 Jun 1991
Country of Publication:
United States
Language:
English