Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Uncertainties in liquid-metal fusion blanket design windows

Conference · · Trans. Am. Nucl. Soc.; (United States)
OSTI ID:5577356
Lithium- and lead-lithium (17Li-83Pb)-cooled fusion blankets offer the promise of excellent neutronic performance, high fusion to electrical energy conversion efficiency, and design simplicity. However, interactive effects such as magnetohydrodynamics (MHD) pressure drop, flow distribution, heat transfer, corrosion, and stress appear to have large enough uncertainties to make the presence of a useful design window questionable, especially in large tokamak reactors. The work reported here attempts to: (a) define limits for the design windows for lithium and lead-lithium as breeders and coolants with stainless steel, ferritic steel, and refractory alloy structural materials in various tokamak fusion reactors and (b) quantify the impact of uncertainties in these limits on the design window. Steady-state MHD pressure drop and heat transfer models are developed and used to quantify the effects of varying several tokamak reactor and blanket design parameters and materials properties. Uncertainties in the present pressure drop equations and calculation methods are also considered. Calculations are used to evaluate the impact of the coolant inlet temperature on the thermal cycle efficiency.
OSTI ID:
5577356
Report Number(s):
CONF-860610-
Conference Information:
Journal Name: Trans. Am. Nucl. Soc.; (United States) Journal Volume: 52
Country of Publication:
United States
Language:
English