skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Processing of UV-induced DNA damage in diverse biological systems

Miscellaneous ·
OSTI ID:5568723

A novel protocol has been developed allowing direct evaluation and accurate quantitation of UV lesions contained with both genomic DNA and the small oligonucleotides excised by a living cell during nucleotide excision repair. Using this methodology, the repair capacity of normal and UV-sensitive cells of human, Chinese hamster, and Escherichia coli origin, has been assessed. Several conclusions have been reached: (1) severage of the interpyrimidine phosphodiester linkage of cyclobutane dimers appears to be an evolutionarily conserved phenomenon; (2) the kinetics of cyclobutane dimer repair differ markedly from both (6-4) photoproduct and TA* lesion removal; (3) the ability to excise cyclobutane dimers is independent of (6-4) photoproduct repair capacity, suggesting that the lesions are not repaired/recognized by identical mechanisms; (4) fibroblast strains representing the eight xeroderma pigmentosum complementation groups each show a unique proficiency/deficiency to repair the different photolesions under study, implicating that a defect in a different locus underlies each genetic form of this disease; (5) the repair deficiency in UV-sensitive strains of trichothiodystrophy appears to be completely unrelated to that of non-complementing XP-D cells. To allow direct assessment of an IDP-altered photoproduct, substrates have been constructed which contain, at a defined dithymidine site, no lesion, a conventional cyclobutane dimer, or a cyclobutane dimer modified by severage of the intradimer phosphodiester bond. Bacteriophage T4 UV endonuclease has no activity towards a modified lesion, questioning the interpretation of experiments which utilize the strand-incising activity of this enzyme to monitor repair. Furthermore, although this altered lesion acts as a block to E. coli DNA polymerase I, it allows SP6 RNA polymerase to bypass the otherwise RNA polymerase-blocking lesion.

Research Organization:
Alberta Univ., Edmonton, AB (Canada)
OSTI ID:
5568723
Resource Relation:
Other Information: Thesis (Ph.D.). Order No. DANN77367
Country of Publication:
United States
Language:
English