skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction

Journal Article · · Journal of Cellular Physiology; (USA)

The patterns of radioactively labeled proteins from cultured chicken embryo cells stressed in the presence of either D2O or glycerol were analyzed by using one-dimensional polyacrylamide gel electrophoresis. These hyperthermic protectors blocked the induction of stress proteins during a 1-hour heat shock at 44 degrees C. The inhibitory effect of glycerol but not D2O on the induction of heat shock proteins could be overcome by increased temperature. By using transcriptional run-on assays of isolated nuclei and cDNA probes to detect hsp70- and hsp88-specific RNA transcripts, it was shown that the D2O and glycerol blocks occurred at or before transcriptional activation of the hsp70 and hsp88 genes. After heat-stressed cells were returned to 37 degrees C and the protectors were removed, heat shock proteins were inducible by a second heating. This result and the fact that the chemical stressor sodium arsenite induced stress proteins in glycerol medium indicated that the treatments did not irreversibly inhibit the induction pathways and that the stress response could be triggered even in the presence of glycerol by a stressor other than heat. In principle then, cells incurring thermal damage during a 1-hour heat shock at 44 degrees C in D2O or glycerol medium should be competent to respond by inducing heat shock proteins during a subsequent recovery period at 37 degrees C in normal medium. We found that heat shock proteins were not induced in recovering cells, suggesting that glycerol and D2O protected heat-sensitive targets from thermal damage. Evidence that the heat-sensitive target(s) is likely to be a protein(s) is summarized. During heat shocks of up to 3 hours duration, neither D2O nor glycerol significantly altered hsp23 gene activity, a constitutively expressed chicken heat shock gene whose RNA transcripts and protein products are induced by stabilization (increased half-life).

OSTI ID:
5564122
Journal Information:
Journal of Cellular Physiology; (USA), Vol. 139:2; ISSN 0021-9541
Country of Publication:
United States
Language:
English