Anomalous small angle x-ray scattering studies of heavy metal ion solvation behavior in clay minerals
- Argonne National Lab., IL (United States)
The authors have exploited anomalous small angle x-ray scattering (ASAXS) to monitor the solvation behavior of Cu(II), Er(III) and Yb(III) ions within the interlayers of the natural aluminosilicate clay mineral montmorillonite. The ASAXS technique can reveal the distribution of specific metallic species within a heterogeneous and disordered matrix. The variations of signal intensity as a function of absorption energy were monitored for all of the metal-clays as a function of hydration. Two different hydration levels were probed: as prepared at ambient conditions, or so-called {open_quotes}dry{close_quotes} powders, and {open_quotes}wet{close_quotes} pastes. ASAXS intensities should increase with absorption energy if the metal ion is associated with the interlayer solvent (water in this case), and decrease if the metal ion is associated with the solid matrix. The results show that: (1) Cu(II) is solvated within the interlayers of the wet sample, as expected, and (2) Er(III) and Yb(III) decrease in ASAXS intensity with increased hydration. This latter result was not expected and there is speculation that these ions have associated as hydrolyzed products with the clay surface. The basic principles underlying SAXS and ASAXS will also be presented in this paper.
- Research Organization:
- Argonne National Lab., IL (United States)
- Sponsoring Organization:
- USDOE Office of Energy Research, Washington, DC (United States)
- DOE Contract Number:
- W-31109-ENG-38
- OSTI ID:
- 555227
- Report Number(s):
- ANL/CHM/CP--93248; CONF-970962--; ON: DE97053650
- Country of Publication:
- United States
- Language:
- English
Similar Records
Solvation of exchangeable Cu/sup 2 +/ cations by primary alcohols in montmorillonite clay studied by electron spin resonance and electron spin echo modulation spectroscopies
Interactions of water-soluble porphyrins and metalloporphyrins with smectite clay surfaces