Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Anomalous small angle x-ray scattering studies of heavy metal ion solvation behavior in clay minerals

Conference ·
OSTI ID:555227

The authors have exploited anomalous small angle x-ray scattering (ASAXS) to monitor the solvation behavior of Cu(II), Er(III) and Yb(III) ions within the interlayers of the natural aluminosilicate clay mineral montmorillonite. The ASAXS technique can reveal the distribution of specific metallic species within a heterogeneous and disordered matrix. The variations of signal intensity as a function of absorption energy were monitored for all of the metal-clays as a function of hydration. Two different hydration levels were probed: as prepared at ambient conditions, or so-called {open_quotes}dry{close_quotes} powders, and {open_quotes}wet{close_quotes} pastes. ASAXS intensities should increase with absorption energy if the metal ion is associated with the interlayer solvent (water in this case), and decrease if the metal ion is associated with the solid matrix. The results show that: (1) Cu(II) is solvated within the interlayers of the wet sample, as expected, and (2) Er(III) and Yb(III) decrease in ASAXS intensity with increased hydration. This latter result was not expected and there is speculation that these ions have associated as hydrolyzed products with the clay surface. The basic principles underlying SAXS and ASAXS will also be presented in this paper.

Research Organization:
Argonne National Lab., IL (United States)
Sponsoring Organization:
USDOE Office of Energy Research, Washington, DC (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
555227
Report Number(s):
ANL/CHM/CP--93248; CONF-970962--; ON: DE97053650
Country of Publication:
United States
Language:
English