Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

CO sub 2 reactivity and heterogeneity of cerebral blood flow in ischemic, border zone, and normal cortex

Journal Article · · American Journal of Physiology; (USA)
OSTI ID:5543772

Regional arterial CO2 tension (PaCO2) reactivity of cerebral blood flow (CBF) and the effect of PaCO2 on the spatial and temporal heterogeneity of CBF were investigated by using autoradiographically determined CBF in the rat middle cerebral artery occlusion model after a 2-h period under pentobarbital anesthesia to clarify the relation between PaCO2 reactivity, CBF heterogeneity, and the temporal cycling of CBF. PaCO2 was adjusted to one of four levels. CBF was determined in four cortical areas and white matter using the tissue fractionation of (14C)iodoantipyrine (( 14C)IAP) in combination with vessel mapping using in vivo 4% thioflavine S. Specific PaCO2 reactivity and CBF were normal in the nonischemic cortex, normal, although slightly depressed, in the border zone far from the ischemic core area, and depressed in the border zone adjacent to the ischemic core area (P less than 0.001) and the ischemic core (P less than 0.001). In normocapnic and hypocapnic animals, CBF heterogeneity in the form of regularly spaced CBF columns perpendicular to the cortical surface was observed in the nonischemic hemisphere but was absent in the ischemic core area. In hypercapnic rats, flow columns were present in the ischemic core areas and border zones but were absent on the nonischemic side. There was a highly significant interaction (P less than 0.0001) in observer-determined heterogeneity grades between PaCO2 level and each of three areas, normal, border zone, and ischemic core. In normal cortex, comparison of the thioflavine S-stained vessels with the flow columns provided evidence supporting the concept of capillary recruitment and cycling as a mode of normal cerebral blood flow control.

OSTI ID:
5543772
Journal Information:
American Journal of Physiology; (USA), Journal Name: American Journal of Physiology; (USA) Vol. 257; ISSN 0002-9513; ISSN AJPHA
Country of Publication:
United States
Language:
English