skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy

Journal Article · · Applied Spectroscopy
; ; ;  [1]
  1. Group CST-I, MS J565, Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

In laser-induced breakdown spectroscopy (LIBS), a focused laser pulse is used to ablate material from a surface and form a laser plasma that excites the vaporized material. Geometric factors, such as the distance between the sample and the focusing lens and the method of collecting the plasma light, can greatly influence the analytical results. To obtain the best quantitative results, one must consider this geometry. Here we report the results of an investigation of the effect of sampling geometry on LIBS measurements. Diagnostics include time-resolved spectroscopy and temporally and spectrally resolved imaging using an acousto-optic tunable filter (AOTF). Parameters investigated include the type of lens (cylindrical or spherical) used to focus the laser pulse onto the sample, the focal length of the lens (75 or 150 mm), the lens-to-sample distance (LTSD), the angle-of-incidence of the laser pulse onto the sample, and the method used to collect the plasma light (lens or fiber-optic bundle). It was found that atomic emission intensities, plasma temperature, and mass of ablated material depend strongly on the LTSD for both types of lenses. For laser pulse energies above the breakdown threshold for air, these quantities exhibit symmetric behavior about an LTSD approximately equal to the back focal length for cylindrical lenses and asymmetric behavior for spherical lenses. For pulse energies below the air breakdown threshold, results obtained for both lenses display symmetric behavior. Detection limits and measurement precision for the elements Be, Cr, Cu, Mn, Pb, and Sr, determined with the use of 14 certified reference soils and stream sediments, were found to be independent of the lens used. Time-resolved images of the laser plasma show that at times {gt}5{mu}s after plasma formation a cloud of emitting atoms extends significantly beyond the centrally located, visibly white, intense plasma core present at early times ({lt}0.3{mu}s). (Abstract Truncated)

OSTI ID:
554237
Journal Information:
Applied Spectroscopy, Vol. 50, Issue 12; Other Information: PBD: Dec 1996
Country of Publication:
United States
Language:
English