Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Weldability and microstructure development in nickel-base superalloys

Conference ·
OSTI ID:554146
The integrity of nickel-base superalloy single-crystal welds depends on the weld cracking tendency, weld metal dendrite selection process, stray crystal formation, and macro- and microstructure development. These phenomena have been investigated in commercial nickel-base superalloy single crystal welds. During electron beam and laser beam welding, transverse and longitudinal weld cracking occurred. However, the weld cracking tendency was reduced with preheating. Most of the dendritic growth pattern development in these welds can be explained by a geometric model. However, the welds also contained misoriented stray crystals, which were frequently associated with weld cracks. The formation of stray crystals was related to thermal and constitutional supercooling effects. Fine-scale elemental partitioning between {gamma} and {gamma}{prime} phase was measured with atom-probe field-ion microscopy. Marked differences in partitioning characteristics in two welds were observed and are related to differences in cooling rates. In this paper, the modeling tools available to describe the above are reviewed.
Research Organization:
Oak Ridge National Lab., TN (United States)
Sponsoring Organization:
USDOE Office of Energy Research, Washington, DC (United States)
DOE Contract Number:
AC05-96OR22464
OSTI ID:
554146
Report Number(s):
ORNL/CP--94929; CONF-9709120--; ON: DE98001066
Country of Publication:
United States
Language:
English