Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Solid-state electrochromic switchable window glazings, FY 1984 progress report

Technical Report ·
OSTI ID:5536758
Multilayer, solid-state electrochromic coatings have been prepared and characterized. The electrochromic activity is based on hydrogen-ion insertion into a microcrystalline tungsten oxide (H/sub x/WO/sub y/) layer from a hydrated microcrystalline magnesium fluoride layer. The coatings typically consist of four layers deposited sequentially onto glass: transparent conductor (tin-doped indium oxide, ITO) 330 nm; electrochromic material (H/sub x/WO/sub y/) 500 nm; hydrated fast-ion conductor/electron current blocking layer (MgF/sub 2/) 100 nm; and transparent conductor (gold) 13 nm. Solar-weighted and photopic-weighted optical properties are reported for individual layers and complete multilayer coatings. The electrooptic response of complete solid-state coatings is also reported. Maximum transmittance through the four layer coatings with gold conductive layers was limited to 32% solar and 56% visible. Replacing the gold conductive layer with a tin-doped indium oxide layer increased the maximum transmittance to 59% solar and 64% visible but impaired the electrochromic response. Large area coatings were fabricated (700 cm/sup 2/) and shown to operate in the same manner as the 12 cm/sup 2/ test specimens. Preliminary analyses were made of possible production costs and possible energy savings benefits which would be derived from optimal use of such switchable window coatings.
Research Organization:
Solar Energy Research Inst., Golden, CO (USA)
DOE Contract Number:
AC02-83CH10093
OSTI ID:
5536758
Report Number(s):
SERI/PR-255-2627; ON: DE86004455
Country of Publication:
United States
Language:
English