Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A new torus-like mapping for parallel sparse matrix factorization

Conference ·
OSTI ID:55318

A new family of mappings of the elements of a sparse matrix to the processors of a distributed memory parallel computer is presented. The new mapping is based on torus wrap mappings used for dense matrices and differs from previous sparse mappings in that it is not column oriented. Nonetheless, the new mappings generalize subtree-to-subset column-oriented mappings. Two algorithms for computing the Cholesky factorization using the new mapping are given. The communication volume for these algorithms on the classical k {times} k grid ordered by nested dissection is analyzed theoretically. It is shown that the first algorithm reduces the communication volume to O(k{sup 2}p{sup 1/2}), compared to O(k{sup 2}p) for previously published algorithms. The second reduces the volume to O9k{sup 2}p{sup 1/3} while requiring redundant memory of the same order. An order-of-magnitude argument shows that these algorithms scale much better than column-oriented algorithms.

OSTI ID:
55318
Report Number(s):
DOE/ER/25151--1-Vol.1; CONF-930331--Vol.1
Country of Publication:
United States
Language:
English

Similar Records

Brief Announcement: Communication Optimal Sparse LU Factorization for Planar Matrices
Conference · Thu Jun 01 00:00:00 EDT 2023 · OSTI ID:1999008

Block data distribution for parallel nested dissection
Conference · Thu Nov 30 23:00:00 EST 1995 · OSTI ID:125564

Communication cost of sparse Cholesky factorization on a hypercube
Technical Report · Wed Nov 30 23:00:00 EST 1988 · OSTI ID:5754944