Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Ordering principle for cluster expansions in the theory of quantum fluids, dense gases, and simple classical liquids

Journal Article · · Phys. Rev. A; (United States)
A study is made of a series-expansion procedure which gives the leading terms of the n-particle distribution function p/sup( n/)(1,2,...,n) as explicit functionals in the radial distribution function g(r). The development of the series is based on the cluster-expansion formalism applied to the Abe form for p/sup( n/) expressed as a product of the generalized Kirkwood superposition approximation P/sup( n/)/sub K/ and a correction factor exp(A/sup( n/)(1,2,...,n)). An ordering parameter ..mu.. is introduced to determine A/sup( n/) and p/sup( n/) in the form of infinite power series in ..mu.., and the postulate of minimal complexity is employed to eliminate an infinite number of possible classes of solutions in a sequential relation connecting A/sup( n/-1) and A/sup( n/). Derivation of the series for p/sup( n/) and many other algebraic manipulations involving a large number of cluster integrals are greatly simplified by the use of a scheme which groups together all cluster terms having, in a certain way, the same source term. In particular, the scheme is useful in demonstrating that the nature of the series structure of p/sup(/sup 3/) is such that its three-point Fourier transform S/sup(/sup 3/)(k/sub 1/,k/sub 2/,k/sub 3/) has as a factor the product of the three liquid-structure functions S(k/sub 1/)S(k/sub 2/)S(k/sub 3/). The results obtained to order ..mu../sup 4/ for A/sup(/sup 3/), p/sup(/sup 3/), and S/sup(/sup 3/) agree with those derived earlier in a more straightforward but tedious approach. The result for p/sup(/sup 4/) shows that the convolution approximation p/sup(/sup 4/)/sub c/, which contains ..mu../sup 3/ terms, must be supplemented by a correction of O(..mu../sup 3/) in order to be accurate through third order. The ..mu..-expansion approach is also examined for the cluster expansion of the correlation function in the Bijl-Dingle-Jastrow description of a many-boson system, and then compared with the number-density expansion formula by using the Gaussian model for g(r)-1 to evaluate cluster integrals.
Research Organization:
Arthur Holly Compton Laboratory of Physics, Washington University, St. Louis, Missouri 63130
DOE Contract Number:
W-7405-ENG-26
OSTI ID:
5525341
Journal Information:
Phys. Rev. A; (United States), Journal Name: Phys. Rev. A; (United States) Vol. 25:3; ISSN PLRAA
Country of Publication:
United States
Language:
English