skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Numerical simulation of the plasma current quench following a disruptive energy loss

Journal Article · · Fusion Technol.; (United States)
OSTI ID:5510394

The plasma/electromagnetic interaction with poloidal field coils and nearby passive conductor loops during the current quench following a disruptive loss of plasma energy is simulated. By solving a differential/algebraic system consisting of a set of circuit equations (including the plasma circuit) coupled to a plasma energy balance equation and an equilibrium condition, the electromagnetic consequences of an abrupt thermal quench are observed. Limiters on the small and large major radius sides of the plasma are assumed to define the plasma cross section. The presence of good conductors near the plasma and a small initial distance (i.e., 5 to 10% of the plasma minor radius) between the plasma edge and an inboard limiter are shown to lead to long current decay times. For a plasma with an initial major radius R/sub 0/=4.3 m, aspect ratio A = 3.6, and current I /sub p/ = 4.0 MA, introducing nearby passive conductors lengthens the current decay from milliseconds to hundreds of milliseconds.

Research Organization:
Oak Ridge Nat. Lab., Fusion Eng. Dept., Oak Ridge, TN
OSTI ID:
5510394
Journal Information:
Fusion Technol.; (United States), Vol. 6:1
Country of Publication:
United States
Language:
English