Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Monte Carlo simulations of lattice gauge theories

Technical Report ·
DOI:https://doi.org/10.2172/5502196· OSTI ID:5502196
Monte Carlo simulations done for four-dimensional lattice gauge systems are described, where the gauge group is one of the following: U(1); SU(2); Z/sub N/, i.e., the subgroup of U(1) consisting of the elements e 2..pi..in/N with integer n and N; the eight-element group of quaternions, Q; the 24- and 48-element subgroups of SU(2), denoted by T and O, which reduce to the rotation groups of the tetrahedron and the octahedron when their centers Z/sub 2/, are factored out. All of these groups can be considered subgroups of SU(2) and a common normalization was used for the action. The following types of Monte Carlo experiments are considered: simulations of a thermal cycle, where the temperature of the system is varied slightly every few Monte Carlo iterations and the internal energy is measured; mixed-phase runs, where several Monte Carlo iterations are done at a few temperatures near a phase transition starting with a lattice which is half ordered and half disordered; measurements of averages of Wilson factors for loops of different shape. 5 figures, 1 table. (RWR)
Research Organization:
Brookhaven National Lab., Upton, NY (USA)
Sponsoring Organization:
USDOE
DOE Contract Number:
EY-76-C-02-0016
OSTI ID:
5502196
Report Number(s):
BNL-27323
Country of Publication:
United States
Language:
English