Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

NMR studies of abasic sites in DNA duplexes: Deoxyadenosine stacks into the helix opposite acyclic lesions

Journal Article · · Biochemistry; (USA)
DOI:https://doi.org/10.1021/bi00434a037· OSTI ID:5476946

Proton and phosphorus NMR studies are reported for two complementary nonanucleotide duplexes containing acyclic abasic sites. The first duplex, d(C-A-T-G-A-G-T-A-C){center dot}d(G-T-A-C-P-C-A-T-G), contains an acyclic propanyl moiety, P, located opposite a deoxyadenosine at the center of the helix (designated AP{sub P} 9-mer duplex). The second duplex, d(C-A-T-G-A-G-T-A-C-){center dot}d(G-T-A-C-E-C-A-T-G), contains a similarly located acyclic ethanyl moiety, E (designated AP{sub E} 9-mer duplex). The ethanyl moiety is one carbon shorter than the natural carbon-phosphodiester backbone of a single nucleotide unit of DNA. The majority of the exchangeable and nonexchangeable base and sugar protons in both the AP{sub P} 9-mer and AP{sub E} 9-mer duplexes, including those at the abasic site, have been assigned by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H{sub 2}O and D{sub 2}O solution between -5 and 5{degree}C. These spectroscopic observations establish that A5 inserts into the helix opposite the abasic site (P14 and El14) and stacks between the flanking G4{center dot}C15 and G6{center dot}C13 Watson-Crick base pairs in both the AP{sub P} 9-mer and AP{sub E} 9-mer duplexes. Proton NMR parameters for the Ap{sub P} 9-mer and AP{sub E}9-mer duplexes are similar to those reported previously. These proton NMR experiments demonstrate that the structures at abasic sites are very similar whether the five-membered ring is open or closed or whether the phosphodiester backbone is shortened by one carbon atom. Phosphorus spectra of the AP{sub P} 9-mer and AP{sub E} 9-mer duplexes (5{degree}C) indicate that the backbone conformation is similarly perturbed at three phosphodiester backbone torsion angles.

OSTI ID:
5476946
Journal Information:
Biochemistry; (USA), Journal Name: Biochemistry; (USA) Vol. 28:8; ISSN 0006-2960; ISSN BICHA
Country of Publication:
United States
Language:
English