skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scale lengths of shear velocity heterogeneity at the base of the mantle from S wave differential travel times

Journal Article · · Journal of Geophysical Research
DOI:https://doi.org/10.1029/97JB00331· OSTI ID:547352
;  [1];  [2];  [3]
  1. Institute of Tectonics and W. M. Keck Seismological Laboratory, University of California, Santa Cruz, Santa Cruz, California (United States)
  2. Geophysics Department, Sandia National Laboratory, Albuquerque, New Mexico (United States)
  3. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

Resolving the seismic velocity heterogeneity in the lowermost mantle is essential for understanding the chemical and dynamical processes operating in the boundary layer between the core and the mantle. Several regions of the lowermost mantle appear to have abrupt increases in shear velocity several hundred kilometers above the core-mantle boundary, at the top of the D{sup {prime}{prime}} layer. This structure is revealed by seismic wave energy refracted by the velocity increase, resulting in an extra arrival (Scd) in teleseismic S wavetrains at distances from 65 to 95{degree}. Anomalies in differential travel times of the extra arrival relative to direct S (which turns at shallower depths in the midmantle) or ScS (which reflects from the core-mantle boundary below the velocity increase) provide probes of the velocity heterogeneity in the lowermost mantle with better vertical resolution than provided by conventional ScS-S measurements. We explore the spatial patterns in Scd-S, ScS-Scd, and ScS-S differential time residuals for paths through the lower mantle beneath Alaska, Eurasia, and India (all being regions with coherent Scd phases) to place constraints on the strength and scale lengths of shear velocity heterogeneity and/or variable topography of the lower mantle discontinuity in these regions. The observed patterns are poorly predicted by existing global tomographic models. Significant small-scale heterogeneity, with lateral length scales of 200{endash}500 km or less, exists even within regions that display a relatively uniform D{sup {prime}{prime}} discontinuity structure over scale lengths of 1500{endash}2000 km. The strongest travel time variations are associated with structure above the D{sup {prime}{prime}} region, in contrast to common assumptions. Rapid lateral fluctuations in ScS-Scd differential times suggest that the anomalies accumulate within a relatively thin zone, less than the overall thickness of D{sup {prime}{prime}}. (Abstract Truncated)

OSTI ID:
547352
Journal Information:
Journal of Geophysical Research, Vol. 102, Issue B5; Other Information: PBD: May 1997
Country of Publication:
United States
Language:
English

Similar Records

Major disruption of D" beneath Alaska
Journal Article · Thu May 12 00:00:00 EDT 2016 · Journal of Geophysical Research. Solid Earth · OSTI ID:547352

LLNL's 3-D A Priori Model Constraints and Uncertainties for Improving Seismic Location
Conference · Fri Jul 14 00:00:00 EDT 2000 · OSTI ID:547352

On the measurement of Sdiff splitting caused by lowermost mantle anisotropy
Journal Article · Fri Dec 09 00:00:00 EST 2022 · Geophysical Journal International · OSTI ID:547352