skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic fields and cancer

Abstract

This letter is a response to an article by Savitz and Kaune, EHP 101:76-80. W-L wire code was applied to data from a 1988 Denver study, and an association was reported between high W-L wire code and childhood cancer. This author discusses several studies and provides explanations which weakens the argument that classification error resulted in an appreciable reduction in the association between W-L high wire code and childhood cancer. In conclusion, the fact that new wire code is only weakly correlated with magnetic field measurements (in the same manner as the original W-L wire code) suggests that the newly reported stronger association with childhood cancer is likely due to factors other than magnetic fields. Differential residential mobility and differential residential age are two possible explanations and are suggestive that the reported association may be false.

Authors:
Publication Date:
OSTI Identifier:
5469879
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Health Perspectives; (United States); Journal Volume: 101:5
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; CHILDREN; NEOPLASMS; MAGNETIC FIELDS; BIOLOGICAL EFFECTS; DISEASE INCIDENCE; AGE GROUPS; DISEASES; 560400* - Other Environmental Pollutant Effects

Citation Formats

Jones, T.L. Magnetic fields and cancer. United States: N. p., 1993. Web. doi:10.1289/ehp.93101368.
Jones, T.L. Magnetic fields and cancer. United States. doi:10.1289/ehp.93101368.
Jones, T.L. 1993. "Magnetic fields and cancer". United States. doi:10.1289/ehp.93101368.
@article{osti_5469879,
title = {Magnetic fields and cancer},
author = {Jones, T.L.},
abstractNote = {This letter is a response to an article by Savitz and Kaune, EHP 101:76-80. W-L wire code was applied to data from a 1988 Denver study, and an association was reported between high W-L wire code and childhood cancer. This author discusses several studies and provides explanations which weakens the argument that classification error resulted in an appreciable reduction in the association between W-L high wire code and childhood cancer. In conclusion, the fact that new wire code is only weakly correlated with magnetic field measurements (in the same manner as the original W-L wire code) suggests that the newly reported stronger association with childhood cancer is likely due to factors other than magnetic fields. Differential residential mobility and differential residential age are two possible explanations and are suggestive that the reported association may be false.},
doi = {10.1289/ehp.93101368},
journal = {Environmental Health Perspectives; (United States)},
number = ,
volume = 101:5,
place = {United States},
year = 1993,
month =
}
  • A case-control study was conducted to test the hypothesis that exposure to magnetic fields of the type generated by high-voltage power lines increases cancer incidence in children. The study base consisted of everyone under age 16 years who had lived on a property located within 300 meters of any of the 220 and 400 kV power lines in Sweden during the period 1960-1985. Subjects were followed from their entry into the study base through 1985. A total of 142 cancer cases were identified through a record linkage to the Swedish Cancer Registry. There were 39 leukemia and 33 central nervousmore » system tumor cases. A total of 558 controls were selected at random from the study base. Exposure was assessed by spot measurements and by calculations of the magnetic fields generated by the power lines, taking distance, line configuration, and load into account. Information about historical loads on the power lines was used to calculate the magnetic fields for the year closest in time to diagnosis. When historical calculations were used as exposure assessment for childhood leukemia with cutoff points at 0.1 and 0.2 microtesla (microT), the estimated relative risk increased over the two exposure levels and was estimated at 2.7 (95% confidence interval (CI) 1.0-6.3) for 0.2 microT and over; p for trend = 0.02. When the upper cutoff point was shifted to 0.3 microT, the relative risk was 3.8 (95% CI 1.4-9.3); p for trend = 0.005. These results persisted when adjustment for potential confounding factors was made. For central nervous system tumor, lymphoma, and all childhood cancers combined, there was no support for an association.« less
  • This overview of epidemiologic research addresses the potential role of 60 Hertz electric and magnetic fields (EMF) in the etiology of cancer. The key findings are summarized with notation of the methodological challenges with which investigators must content. Although exposure is ubiquitous, long-term average EMF is influenced primarily by the background levels in homes, use of selected electric appliances such as electric blankets, and workplace exposures to energized equipment. Studies of residential exposure have focused on childhood cancer, starting with the report of an excess of wire configurations associated with elevated magnetic fields near the homes of children who developedmore » cancer compared to healthy children. Several subsequent studies have tended to confirm that association, although the evidence falls short of demonstrating a causal association between magnetic fields and cancer. Exposures from electric appliances have been less extensively pursued, with some suggestions of an association with childhood cancer. A more extensive literature has evaluated the association between workplace exposure to EMF, based on job titles of electrical workers and cancer. Across many different study designs and settings, certain groups of electrical workers show elevated occurrence of leukemia and brain cancer. The consistency of findings is notable, but the key question is whether the association with job title is due to EMF or some other agent in the workplace. Future research would benefit from specification of testable challenges to a causal association between EMF exposure in the home or workplace and cancer, along with continued efforts to improve our understanding and measurement of EMF exposure. 64 refs.« less
  • The reported association between the risk of human cancer and exposure to 50- or 60-Hz electric and magnetic fields is difficult to evaluate from studies published to date. The association is now being reexamined in several large epidemiologic studies. In most of the studies, exposure will be assessed with newly designed, portable meters that allow direct and precise measurements of exposure to be performed easily for large numbers of individuals. The main features of the studies are summarized. At a meeting of principal investigators held in 1988 at the International Agency for Research on Cancer, broad guidelines were agreed formore » the design of this new generation of studies. These guidelines should improve the comparability of results and eventually provide a clearer assessment of human-cancer risk from exposure to extremely low-frequency electric and magnetic fields. 17 references.« less
  • Concern with health effects of extremely low frequency magnetic fields has been raised by epidemiologic studies of childhood cancer in relation to proximity to electric power distribution lines. This case-control study was designed to assess the relation between residential exposure to magnetic fields and the development of childhood cancer. Eligible cases consisted of all 356 residents of the five-county 1970 Denver, Colorado Standard Metropolitan Statistical Area aged 0-14 years who were diagnosed with any form of cancer between 1976 and 1983. Controls were selected by random digit dialing to approximate the case distribution by age, sex, and telephone exchange area.more » Exposure was characterized through in-home electric and magnetic field measurements under low and high power use conditions and wire configuration codes, a surrogate measure of long-term magnetic field levels. Measured magnetic fields under low power use conditions had a modest association with cancer incidence; a cutoff score of 2.0 milligauss resulted in an odds ratio of 1.4 (95% confidence interval (CI) = 0.6-2.9) for total cancers and somewhat larger odds ratios (ORs) for leukemias (OR = 1.9), lymphomas (OR = 2.2), and soft tissue sarcomas (OR = 3.3). Neither magnetic fields (OR = 1.0) nor electric fields (OR = 0.9) under high power use conditions were related to total cancers. Wire codes associated with higher magnetic fields were more common among case than control homes. The odds ratio to contrast very high and high to very low, low, and buried wire codes was 1.5 (95% CI = 1.0-2.3) for total cases, with consistency across cancer subgroups except for brain cancer (OR = 2.0) and lymphomas (OR = 0.8). Contrasts of very high to buried wire code homes produced larger, less precise odds ratios of 2.3 for total cases, 2.9 for leukemias, and 3.3 for lymphomas.« less
  • This study examines childhood cancer risk in relation to certain factors likely to indicate magnetic field exposure from ground currents in the home. Substantial ground currents are most often found in homes having conductive plumbing, in which an uninterrupted metallic path in the water pipes and water main connects the grounding systems of neighboring houses. Information on plumbing conductivity was obtained from water suppliers for the homes of 347 cases and 277 controls identified in an earlier study of magnetic field exposure and childhood cancer in the Denver area. An increased cancer risk was observed for children in homes withmore » conductive plumbing: the matched odds ratio was 1.72 and increased to 3.00 when analysis was limited to cases and controls who were residentially stable from the reference date to the study date. A measurement metric likely to indicate active ground currents (measurements having above-median intensity and a nonvertical orientation of < 55{degree} from the horizontal) was identified. In contrast to measured field intensity alone, for which only modest associations with cancer have been reported, this metric shows a high and significant cancer risk consistent over a range of intensity and angle cutpoints. Such elevated nonvertical fields were also associated with cancer in an independent data set, which was gathered to study adult nonlymphocytic leukemia in the Seattle area. The associations of cancer with conductive plumbing and with this exposure metric both suggest that cancer risk is increased among persons with elevated magnetic field exposure from residential ground currents.« less