skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inhibition of iron corrosion in sulfuric acid at elevated temperatures by bismuth(III) compounds

Journal Article · · Corrosion
DOI:https://doi.org/10.5006/1.3290300· OSTI ID:544070
; ;  [1]
  1. Keio Univ., Yokohama (Japan). Dept. of Chemistry

Inhibition effects of bismuth(III) chloride (BiCl{sub 3}), bismuth(III) iodide (BiI{sub 3}), and a mixture of BiI{sub 3} and benzyl thiocyanate (C{sub 6}H{sub 5}CH{sub 2}SCN or BTC) on corrosion of iron (Fe) in 0.5 M sulfuric acid (H{sub 2}SO{sub 4}) at elevated temperatures were investigated using polarization measurements. The film formed on the Fe surface was analyzed by x-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). Because the anodic process of Fe corrosion was not suppressed, BiCl{sub 3} was an ineffective inhibitor at > 70 C. Since the anodic process was inhibited by specific adsorption of I{sup {minus}}, BiI{sub 3} at 1 {times} 10{sup {minus}4} M was highly efficient for inhibition of Fe corrosion in 0.5 M H{sub 2}SO{sub 4} at 90 C. The synergistic inhibitory effect of 1 {times} 10{sup {minus}4} M BiI{sub 3} and 4 {times} 10{sup {minus}3} M BTC resulted in a significantly high inhibitor efficiency (I{sub eff}) of 99.1% for Fe corrosion in 0.5 M H{sub 2}SO{sub 4} at 90 C. The cathodic process was suppressed by covering most of the surface with metallic bismuth (Bi). The anodic process was inhibited by coverage with the oxidative addition product of BTC at small spots uncoated with the Bi layer.

Sponsoring Organization:
USDOE
OSTI ID:
544070
Journal Information:
Corrosion, Vol. 53, Issue 9; Other Information: PBD: Sep 1997
Country of Publication:
United States
Language:
English