skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A molecular beam photoionization mass spectrometric study of Cr(CO){sub 6}, Mo(CO){sub 6}, and W(CO){sub 6}

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.474814· OSTI ID:542171
; ;  [1]
  1. Ames Laboratory, United States Department of Energy, and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

The photoionization efficiency (PIE) spectra for M(CO){sub n}{sup +} (n=0{endash}6) from M(CO){sub 6}, M=Cr, Mo, and W, have been measured in the photon energy range of 650{endash}1600 {Angstrom}. Based on the ionization energies for M(CO){sub 6} and appearance energies (AEs) for M(CO){sub n}{sup +} (n=0{endash}5) determined here, we have obtained estimates for the sequential bond dissociation energies (D{sub 0}) for CO{endash}M(CO){sub n{minus}1}{sup +} (n=1{endash}6). The comparison between the D{sub 0} values for the Cr(CO){sub 6}{sup +} system obtained here and in the recent collisional induced dissociation and theoretical studies suggests that D{sub 0} values for CO{endash}M(CO){sub n{minus}1}{sup +} (n=3{endash}6) based on this PIE experiment are reliable. The PIE results reveal the general trend for individual D{sub 0} values that D{sub 0}[CO{endash}Cr(CO){sub n{minus}1}{sup +}]{lt}D{sub 0}[CO{endash}Mo(CO){sub n{minus}1}{sup +}]{lt}D{sub 0}[CO{endash}W(CO){sub n{minus}1}{sup +}] (n=3{endash}6). The comparison of the first D{sub 0} values for M(CO){sub 6}{sup +} obtained here and those for M(CO){sub 6} reported previously provides strong support for the theoretical analysis that the importance of relativistic effects, which give rise to more efficient M to CO {pi}-back-donation in M(CO){sub 6}, is in the order W(CO){sub 6}{gt}Mo(CO){sub 6}{gt}Cr(CO){sub 6}. {copyright} {ital 1997 American Institute of Physics.}

Research Organization:
Ames National Laboratory
DOE Contract Number:
W-7405-ENG-82
OSTI ID:
542171
Journal Information:
Journal of Chemical Physics, Vol. 107, Issue 12; Other Information: PBD: Sep 1997
Country of Publication:
United States
Language:
English