skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The effects of experimental lake acidification on the reproductive success of tree swallows

Miscellaneous ·
OSTI ID:5409879

The effects of lake acidification on reproductive success of tree swallows (Tachycineta bicolor) breeding near experimentally acidified and unmanipulated reference lakes at the Experimental Lake Area (ELA) were studied. Tree swallows are aerial insectivores that commonly breed near water and forage on emergent insects. Predictions suggest that avian food abundance and quality may be altered due to acidification. Breeding swallows foraged on chironomids emerging at their nest-site lakes before searching for food elsewhere. Among the calcium-rich items consumed by the swallows, fish bones were most numerous, followed by crayfish exoskeleton, clam shell, and bird eggshell. We found significantly fewer calcium-rich items in the stomachs of nestlings from acid lakes than in those from reference lakes. Chironomid species were significantly more abundant in acid lakes, while the Chironominae were less numerous. Biomass of emerging chironomids either increased significantly following acidification, or was not different from that of reference lakes. Concentrations of Al, Ca, Mn, and Zn were on average higher in chironomids from a number of the acid lakes than in chironomids from reference lakes. Calcium concentrations in chironomids from the most acid lake were significantly lower, suggesting that Ca may be difficult to sequester at low pH levels. Hepatic concentrations of metallothioneins in tree swallow nestlings were negatively correlated with pH of the nest-site lake. Additive concentrations of Cu and Zn in the liver were correlated with liver MT concentrations, but Cd was not. Near acidified lakes, eggs were smaller in certain dimensions, hatching success was lower, certain nestling body characters were smaller, nestling wing length was shorter, and growth functions were different than near unmanipulated reference lakes. Clearly even non-aquatic organisms are affected by acidification of freshwater ecosystems.

Research Organization:
Toronto Univ., ON (Canada)
OSTI ID:
5409879
Resource Relation:
Other Information: Thesis (Ph.D.). Order No. DANN73911
Country of Publication:
United States
Language:
English