Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Radiative heat transfer in oil shale retorting. Final report

Technical Report ·
OSTI ID:5402307
In the present study, the frequency response method has been used to investigate heat transfer in a packed bed subject to gas flow at low Reynold's numbers (less than 20). A new model was developed, the extended single particle model (ESPM), which includes axial conduction in the solid, solid to solid particle radiative transfer, gas-particle interphase transfer, and is expressed in terms of the surface temperature of the solid. The theoretical frequency response of the new model was compared with several existing differential balance models, and also with a mixing cell form of the ESPM model. Experiments were performed using four different sizes of alumina spheres, ranging from 0.003175 to 0.01905 meters in diameter, with temperatures from 600 to 1300 K and particle Reynold's numbers varying from 0.6 to 13. The model was used to obtain estimates of the heat transfer parameters h (gas particle heat transfer coefficient) and k/sub eax/ (effective axial thermal conductivity). The Nusselt number was found to follow Nu = 0.154 Re/sup 1.48/ for 0.6 < Re < 13. The data tend to support the interpretation of Martin (1978) concerning the effect of voidage variations on the Nusselt number at low flow rates. When a radiatively participating gas was used, the Nusselt number was not significantly different from runs made with air. The estimates of k/sub eax/ showed a strong temperature and particle size dependency consistent with existing theory, and also were not altered when a participating gas was used. 79 refs., 35 figs., 13 tabs.
Research Organization:
School of Mines, Golden (USA). Dept. of Chemical Engineering and Petroleum Refining
DOE Contract Number:
AC01-81ER10823
OSTI ID:
5402307
Report Number(s):
DOE/ER/10823-T1; ON: DE85017941
Country of Publication:
United States
Language:
English