Lessons learned from applications of vibration-based damage identification methods to a large bridge structure
Over the past 30 years detecting damage in a structure from changes in dynamic parameters has received considerable attention from the aerospace, civil, and mechanical engineering communities. The general idea is that changes in the structure`s physical properties (i.e., stiffness, mass, and/or damping) will, in turn, alter the dynamic characteristics (i.e., resonant frequencies, modal damping, and mode shapes) of the structure. Properties such as the flexibility matrix, stiffness matrix, and mode shape curvature, which are obtained from modal parameters, have shown promise for locating structural damage. However, the application of these techniques to large civil engineering structures is limited because of the inability to find structures that the owners will allow to be damaged. Also, the cost associated with testing these structures can be prohibitive. In this paper, the authors` experiences with performing modal tests on a large highway bridge, in its undamaged and damaged state, for the purpose of damage identification will be summarized. Particular emphasis will be made on the lessons learned from this experience and the lessons learned from recent tests on another bridge structure.
- Research Organization:
- Los Alamos National Lab., NM (United States)
- Sponsoring Organization:
- USDOE Assistant Secretary for Human Resources and Administration, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 539838
- Report Number(s):
- LA-UR--97-2469; CONF-970993--; ON: DE98000282
- Country of Publication:
- United States
- Language:
- English
Similar Records
Assessment of damage identification algorithms on experimental and numerical bridge data
Vibration-based health monitoring and model refinement of civil engineering structures