Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Formation and polymerization of cyclic disilsesquioxanes

Conference ·
OSTI ID:539089
; ;  [1]
  1. Sandia National Labs., Albuquerque, NM (United States); and others

Under acidic sol-gel polymerization conditions, 1,3-bis(triethoxysilyl)-propane 1 and 1,4-bis(triethoxysilyl)butane 2 were shown to preferentially form cyclic disilsesquioxanes 3 and 4 rather than the expected 1,3-propylene- and 1,4-butylene-bridged polysilsesquioxane gels. Formation of 3 and 4 is driven by a combination of an intramolecular cyclization to six and seven membered rings, and a pronounced reduction in reactivity under acidic conditions as a function of increasing degree of condensation. The stability of cyclic disilsesquioxanes was confirmed with the synthesis of 3 and 4 in gram quantities; the cyclic disilsesquioxanes react slowly to give tricyclic dimers containing a thermodynamically stable eight membered siloxane ring. Continued reactions were shown to perserve the cyclic structure, opening up the possibility of utilizing cyclic disilsesquioxanes as sol-gel monomers. Preliminary polymerization studies with these new, carbohydrate-like monomers revealed the formation of network poly(cyclic disilsesquioxanes) under acidic conditions and polymerization with ring-opening under basic conditions.

OSTI ID:
539089
Report Number(s):
CONF-960807--
Country of Publication:
United States
Language:
English