Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Uranium favorability of late Eocene through Pliocene rocks of the South Texas Coastal Plain

Technical Report ·
DOI:https://doi.org/10.2172/5386635· OSTI ID:5386635
The results of a subsurface uranium favorability study of Tertiary rocks (late Eocene through Pliocene) in the Coastal Plain of South Texas are given. In ascending order, these rock units include the Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand. The Vicksburg Group, Anahuac Formation, and Fleming Formation were not considered because they have unfavorable lithologies. The Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand contain sandstones that may be favorable uranium hosts under certain environmental and structural conditions. All except the Yegua are known to contain ore-grade uranium deposits. Yegua and Jackson sandstones are found in strand plain-barrier bar systems that are aligned parallel to depositional and structural strike. These sands grade into shelf muds on the east, and lagoonal sediments updip toward the west. The lagoonal sediments in the Jackson are interrupted by dip-aligned fluvial systems. In both units, favorable areas are found in the lagoonal sands and in sands on the updip side of the strand-plain system. Favorable areas are also found along the margins of fluvial systems in the Jackson. The Frio and Catahoula consist of extensive alluvial-plain deposits. Favorable areas for uranium deposits are found along the margins of the paleo-channels where favorable structural features and numerous optimum sands are present. The Oakville and Goliad Formations consist of extensive continental deposits of fluvial sandstones. In large areas, these fluvial sandstones are multistoried channel sandstones that form very thick sandstone sequences. Favorable areas are found along the margins of the channel sequences. In the Goliad, favorable areas are also found on the updip margin of strand-plain sandstones where there are several sandstones of optimum thickness.
Research Organization:
Bendix Field Engineering Corp., Grand Junction, Colo. (USA)
DOE Contract Number:
EY-76-C-13-1664
OSTI ID:
5386635
Report Number(s):
GJBX-7(77)
Country of Publication:
United States
Language:
English