Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Heterogeneous nuclear reactor models for optimal xenon control

Thesis/Dissertation ·
OSTI ID:5386423
In this study a thermal nuclear reactor is modeled as a two-dimensional lattice of fuel and control rods placed in an infinite-moderator in plane geometry. The two-group diffusion theory approximation is used for neutron transport. Space-time neutron balance equations are written for two groups and reduced to one space-time algebraic equation by using the two-dimensional Fourier transform. This equation is written at all fuel and control rod locations. Iodine-xenon and promethium-samarium dynamic equations are also written at fuel rod locations only. These equations are then linearized about an equilibrium point which is determined from the steady-state form of the original nonlinear system equations. After studying poisonless criticality, with and without control, and the stability of the open-loop system and after checking its controllability, a performance criterion is defined for the xenon-induced spatial flux oscillation problem in the form of a functional to be minimized. Linear-quadratic optimal control theory is then applied to solve the problem.
Research Organization:
Illinois Univ., Urbana (USA)
OSTI ID:
5386423
Country of Publication:
United States
Language:
English