skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Confirmation of dust condensation in the ejecta of supernova 1987a

Journal Article · · Proceedings of the National Academy of Sciences of the United States of America; (United States)
;  [1]
  1. Univ. of Minnesota, Minneapolis (USA)

Shortly after its outburst, the authors suggested that supernova 1987a might condense a dust shell of substantial visual optical thickness as many classical novae do and predicted that dust might form within a year after the explosion. A critical examination of recent optical and infrared observations reported by others confirms that dust grains had begun to grow at a temperature of 1,000 K after 300 days and that the dust shell had become optically thick by day 600. After day 600, the infrared luminosity closely followed the intrinsic luminosity expected for thermalized {sup 56}Co {gamma} rays, demonstrating that the luminosity is powered by radioactivity and that the dust is outside the radioactivity zone. The infrared luminosity sets an upper limit to the soft intrinsic bolometric luminosity of a pulsar central engine. This upper limit for the pulsar in supernova 1987a is the same luminosity as the Crab pulsar has today 936 years after its formation. It is unlikely that the rotation rate for a pulsar in supernova 1987a can be much higher than {approx}30 revolutions per sec. The relatively long time required for the shell to grow to maximum optical depth as compared with the dust in nova shells may be related to the relatively low outflow velocity of the condensible ejecta.

OSTI ID:
5385792
Journal Information:
Proceedings of the National Academy of Sciences of the United States of America; (United States), Vol. 87:11; ISSN 0027-8424
Country of Publication:
United States
Language:
English