Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Atmospheric chemistry of toxic contaminants. 5. Unsaturated halogenated aliphatics: Allyl chloride, chloroprene, hexachlorocyclopentadiene, vinylidene chloride

Journal Article · · Journal of the Air and Waste Management Association; (United States)
 [1]
  1. DGA, Inc., Ventura, CA (USA)

Detailed mechanisms are outlined for the chemical reactions involved in the atmospheric removal of four unsaturated chlorinated aliphatic contaminants, allyl chloride, chloroprene, hexachlorocyclopentadiene and vinylidene chloride. Rate constants estimated from structure-reactivity relationships indicate rapid removal for all four compounds by reactions with OH (major), ozone, and No{sub 3}, with half-lives of 2-16 hrs for removal by reaction with OH. Reaction products of allyl chloride (formaldehyde, chloroacetaldehyde, peroxychloroacetyl nitrate) and vinylidene chloride (formaldehyde, phosgene, chloroacetyl chloride) are consistent with OH addition-initiated pathways that include Cl atom elimination. The chlorine atoms produced in the OH reaction sequence react rapidly with all four unsaturated compounds, but these reactions are of negligible importance for atmospheric removal of the four toxic contaminants studied. Analogous mechanisms are discussed for chloroprene (leading to formaldehyde, CH{sub 2} {double bond} CClCHO, and ClCOCHO) and for hexachlorocyclopentadiene (leading to oxalyl chloride and ClCOCCl{sub 2}COCl).

OSTI ID:
5383547
Journal Information:
Journal of the Air and Waste Management Association; (United States), Journal Name: Journal of the Air and Waste Management Association; (United States) Vol. 41:2; ISSN JAWAE
Country of Publication:
United States
Language:
English