Excitation of strong Langmuir turbulence in plasmas near critical density: Application to HF heating of the ionosphere
Journal Article
·
· Journal of Geophysical Research; (United States)
- Los Alamos National Lab., NM (USA)
Results are presented for an extensive study of strong Langmuir turbulence (SLT) in plasmas excited near the critical density by intense coherent radiation beams. The nominal parameters for HF heating experiments imply that the ionospheric plasma is in such a state. Long-time simulations of Zakharov's model of SLT and related theoretical arguments have led to new conclusions and insights: (1) linear parametric instabilities may play a role only during the first few milliseconds after heater turn-on in a quiescent ionosphere, but there is also the possibility of direct nucleation of cavitons in preexisting density fluctuations; (2) both possibilities lead to Langmuir collapse; (3) the turbulence is sustained by nucleation of trapped electric fields in burnt-out density-cavities from previous collapses; (4) the nucleation-collapse-burnout scenario explains several features of the observed ISR plasma line power spectra in early-time, low-duty cycle experiments and predicts new features; (5) ISR spectra obtained at early times in low-duty cycle heating experiments are consistent with the spectra of uncorrelated caviton events; (6) these spectra contain a free mode peak which is due to the radiation of free Langmuir waves by collapsing cavitons; this peak has recently been observed; (7) sharp spectral peaks observed in strong spectra in longer-time, high-duty cycle or CW heating can arise in the SLT model from spatio-temporal caviton correlations, provided overdense domains exist and a Bragg resonance condition is satisfied; (8) correlation models can explain all the sharp features including the decay line, the cascade, the narrow oscillating two-stream instability line, and the anti-Stokes line; these models do not involve parametric instabilities; (9) the characteristic structure of the ISR spectrum is maintained over a much wider range of angles relative to the geomagnetic field than is the case for weak turbulence predictions.
- OSTI ID:
- 5377941
- Journal Information:
- Journal of Geophysical Research; (United States), Journal Name: Journal of Geophysical Research; (United States) Vol. 95:A12; ISSN 0148-0227; ISSN JGREA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Dynamics of cavitons in strong Langmuir turbulence
Concepts in strong Langmuir turbulence theory
Caviton dynamics in strong Langmuir turbulence
Conference
·
Sun Dec 31 23:00:00 EST 1989
·
OSTI ID:7103693
Concepts in strong Langmuir turbulence theory
Conference
·
Sun Dec 31 23:00:00 EST 1989
·
OSTI ID:6784660
Caviton dynamics in strong Langmuir turbulence
Conference
·
Sat Dec 31 23:00:00 EST 1988
·
OSTI ID:6067377
Related Subjects
640201* -- Atmospheric Physics-- Auroral
Ionospheric
& Magetospheric Phenomena
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
CORRELATIONS
DIAGNOSTIC TECHNIQUES
EARTH ATMOSPHERE
ELECTRIC FIELDS
ELECTROMAGNETIC RADIATION
HEATING
HIGH-FREQUENCY HEATING
INSTABILITY
IONOSPHERE
MATHEMATICAL MODELS
PARAMETRIC INSTABILITIES
PLANETARY IONOSPHERES
PLASMA
PLASMA HEATING
PLASMA INSTABILITY
PLASMA MACROINSTABILITIES
RADIATIONS
RADIOWAVE RADIATION
TURBULENCE
Ionospheric
& Magetospheric Phenomena
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
CORRELATIONS
DIAGNOSTIC TECHNIQUES
EARTH ATMOSPHERE
ELECTRIC FIELDS
ELECTROMAGNETIC RADIATION
HEATING
HIGH-FREQUENCY HEATING
INSTABILITY
IONOSPHERE
MATHEMATICAL MODELS
PARAMETRIC INSTABILITIES
PLANETARY IONOSPHERES
PLASMA
PLASMA HEATING
PLASMA INSTABILITY
PLASMA MACROINSTABILITIES
RADIATIONS
RADIOWAVE RADIATION
TURBULENCE