Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Annual report, October 1983-September 1984

Technical Report ·
OSTI ID:5358616
Under the auspices of the US Department of Energy, this work supports a program to develop sorbents for the cleanup of alkali corrodents from the flue gas produced by pressurized fluidized-bed coal combustion (PFBC) so that the cleaned hot gas is able to power downstream gas turbines without causing corrosion. This effort for FY 1984 involved two parts. In the first part, a laboratory-scale pressurized test unit was used to measure the rate of alkali (Na + K) evolution from beds of activated bauxite and Emathlite at a bed temperature of 850/sup 0/C and a system pressure of 10 atm absolute in a gas stream closely simulating the actual PFBC flue gas. The evaluation of the measured rates showed that (1) a spent activated bauxite bed, regenerated by water leaching and replenished with a small amount of fresh activated bauxite, contributes significantly less alkali vapor to the flue gas than the currently accepted alkali tolerance (0.024 ppM) of an industrial gas turbine and (2) the Emathlite bed contributes more alkali vapor than the turbine tolerance limit if the bed is exposed to a flue gas for a space time greater than 0.5 seconds. In the second part, a laboratory-scale demonstration of a fixed granular-bed sorber for the control of alkali vapor from PFBC flue gas was initiated. A detailed engineering design of this sorber system is described, and initial test results are presented and discussed. 26 refs., 16 figs.; 14 tabs.
Research Organization:
Argonne National Lab., IL (USA)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
5358616
Report Number(s):
ANL/FE-84-18; ON: DE86000825
Country of Publication:
United States
Language:
English