Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

HEU age determination

Technical Report ·
DOI:https://doi.org/10.2172/534522· OSTI ID:534522

A new technique has been developed to determine the age of highly enriched uranium (HEU) in solids. Uranium age is defined as the time since the uranium-containing material was last subjected to a process capable of separating uranium from its radioactive-decay daughters. [Most chemical processing, uranium enrichment, volatilization processes, and phase transformations (especially relevant for uranium hexafluoride) can result in separation of the uranium parent material from the decay-product daughters.] Determination of the uranium age, as defined here, may be relevant in verifying arms-control agreements involving uranium-containing nuclear weapons. The HEU age is determined from the ratios of relevant uranium daughter isotopes and their parents, viz {sup 230}Th/{sup 234}U and {sup 231}Pa/{sup 235}U. Uranium isotopes are quantitatively measured by their characteristic gamma rays and their daughters by alpha spectroscopy. In some of the samples, where HEU is enriched more than 99%, the only mode of HEU age determination is by the measurement of {sup 231}Pa since there is negligible quantity of {sup 230}Th due to very low atom concentrations of {sup 234}U in the samples. In this report the methodology and the data for determining the age of two HEU samples are presented.

Research Organization:
Brookhaven National Lab., Upton, NY (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC02-76CH00016
OSTI ID:
534522
Report Number(s):
BNL--52535; SSN--97-23; ON: DE98000152
Country of Publication:
United States
Language:
English