Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Zeolite supported iron-cobalt catalysts for the Fischer-Tropsch synthesis

Thesis/Dissertation ·
OSTI ID:5344841

A series of Fe, Co, FeCo catalysts on Y and ZSM-5 supports, prepared by impregnation and ion exchange, has been investigated. Characterization methods utilized were x-ray diffraction, H{sub 2}/CO chemisorption, Moessbauer spectroscopy, and atomic absorption. A differential reactor and as chromatographs were also employed to analyze the reaction activity and product selectivity. (i) Y supported catalysts: The oxidation, reduction, and carburization behavior of the iron-containing catalysts were observed via Moessbauer spectra. The reversibility of FeY (ion exchange) in oxidation-reduction cycles was confirmed in this experiment. Furthermore, ion exchange catalysts (FeY, FeCoY) do not show any iron metal, alloy or carbide phase after reduction or carburization. In contrast to silica supported catalysts, FeCo/HY (impregnated) reveals a Moessbauer spectra similar to Fe/HY. A 1/1 (CO/H{sub 2}) feed was used to investigate the Fischer-Tropsch reaction at 1 atm, 250{degree}C. (ii) ZSM-5 supported catalysts: Moessbauer results indicate similar patterns for impregnated and ion-exchanged catalysts, and reaction studies reveal similar catalytic behavior for the two preparation methods. This is in contrast to the rather widely different properties of these metals resulting from impregnation or ion exchange on Y zeolite. In generation, the ZSM-5 supported metals produce higher activity and selectivity for high molecular weight materials, and are particularly identified with significant aromatic content in the production distribution.

Research Organization:
Northwestern Univ., Evanston, IL (USA)
OSTI ID:
5344841
Country of Publication:
United States
Language:
English