Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Strain hardening mechanisms in a Ni-Mo-Cr alloy

Journal Article · · Scripta Metallurgica; (United States)
 [1];  [2];  [3]
  1. Academy of Mining and Metallurgy, Krakow (PL)
  2. Illinois Inst. of Tech., Chicago, IL (United States)
  3. Haynes Int. Inc. Kokomi, IN (US)
HAYNES 242 alloy has been recently developed for gas turbine components applications. This age-hardenable alloy, consisting essentially of Ni-25%Mo-8%Cr, utilizes a long-range-ordering reaction to form uniformly sized and distributed, extremely small (on the order of 10nm), ordered particles. Excellent strength and ductility at elevated temperatures, low thermal expansion characteristics and good oxidation resistance of Haynes 242 alloy has encouraged a number of studies designed to characterize its properties. What is lacking is an attempt to understand the fundamentals of the deformation and strengthening mechanisms in this alloy. This on-going research has been undertaken to explore deformation mechanisms in unaged and aged Haynes 242 alloy. The emphasis has been put on the effects of initial precipitation structure on the development of deformation structure and how it controls selected mechanical properties. This paper presents selected results and reports a change in the deformation mode from crystallographic glide in an unaged alloy into twinning in the presence of ordered particles. Deformation twinning in Ni-Mo and Ni-Mo-Cr alloys was reported earlier but was not discussed in detail. This research sheds light on possible origins of particle-induced twinning in alloys strengthened by small ordered particles.
OSTI ID:
5343182
Journal Information:
Scripta Metallurgica; (United States), Journal Name: Scripta Metallurgica; (United States) Vol. 25:1; ISSN 0036-9748; ISSN SCRMB
Country of Publication:
United States
Language:
English