Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Use of aerosol microphysical measurements to model IR backscatter in support of GLOBE

Journal Article · · Journal of Geophysical Research; (United States)
DOI:https://doi.org/10.1029/90JD02155· OSTI ID:5331078
 [1];  [2]
  1. Georgia Inst. of Tech., Atlanta (USA)
  2. Univ. of Alabama, Huntsville (USA)

The authors have used the GAMETAG Pacific mid-tropospheric aerosol data set to calculate aerosol optical extinction coefficients ({sigma}) at two wavelengths (0.55 {mu}m and 1 {mu}m) and volume backscatter coefficients ({beta}) at 4 wavelengths (1 {mu}m, 9.11 {mu}m, 9.25 {mu}m, and 10.6 {mu}m). At an altitude of 5 km over the Pacific, northern hemispheric mean values of {beta} for 10.6 {mu} are near 10{sup {minus}10} m{sup {minus}1}sr{sup {minus}1} at an altitude of 5 km, with southern hemispheric values approximately an order of magnitude lower. The 9.11 {mu}m values are roughly a factor of 3 higher than the 10.6 {mu}m values; 9.25 {mu}m values are approximately the same as 9.11 {mu}m values. For the data averaging times of 5-10 min are necessary for the calculated {beta} values as seen by a satellite lidar system. Under the assumptions of this study the molecular form of the sulfate aerosol is not a major determining factor in the calculated {beta} values at 10.6 {mu}m but could be significant at 9.11 {mu}m. A study of relationships among the optical parameters indicates that visible and near-visible values of {beta} and {sigma} may be useful in predicting 9.11- and 10.6 {mu}m backscatter, so that short wavelength aerosol data bases form satellites and Nd-YAG lidars may be useful in extending the data base of direct backscatter measurements at CO{sub 2} wavelengths.

OSTI ID:
5331078
Journal Information:
Journal of Geophysical Research; (United States), Journal Name: Journal of Geophysical Research; (United States) Vol. 96:D3; ISSN 0148-0227; ISSN JGREA
Country of Publication:
United States
Language:
English