Experimental validation of superconducting quantum interference device sensors for electromagnetic scattering in geologic structures
- and others
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project has supported the collaborative development with Sandia National Laboratories (SNL) and the University of New Mexico (UNM) of two critical components for a hand-held low-field magnetic sensor based on superconducting quantum interference device (SQUID) sensor technology. The two components are a digital signal processing (DSP) algorithm for background noise rejection and a small hand-held dewar cooled by a cryocooler. A hand-held sensor has been designed and fabricated for detection of extremely weak magnetic fields in unshielded environments. The sensor is capable of measuring weak magnetic fields in unshielded environments and has multiple applications. We have chosen to pursue battlefield medicine as the highest probability near-term application because of stated needs of several agencies.
- Research Organization:
- Los Alamos National Lab., NM (United States)
- Sponsoring Organization:
- USDOE Assistant Secretary for Human Resources and Administration, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 532685
- Report Number(s):
- LA-UR--97-3416; ON: DE98000141
- Country of Publication:
- United States
- Language:
- English
Similar Records
Ultra-sensitive sensors for weak electromagnetic fields using high-{Tc} SQUIDS for biomagnetism, NDE, and corrosion currents
Low-field magnetic resonance imaging of gases