Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Reductive dechlorination of tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions

Journal Article · · Applied and Environmental Microbiology; (United States)
OSTI ID:5318675
 [1]
  1. Technical Univ. of Braunschweig (Germany)
Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 {mu}mol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 {mu}mol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 - {minus}150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions.
OSTI ID:
5318675
Journal Information:
Applied and Environmental Microbiology; (United States), Journal Name: Applied and Environmental Microbiology; (United States) Vol. 57:7; ISSN 0099-2240; ISSN AEMID
Country of Publication:
United States
Language:
English