A note on Krichever-Novikov-Kac-Moody algebra on Riemann surfaces
Journal Article
·
· Modern Physics Letters A; (United States)
- Dept. of Physics, Osaka Univ., Toyonaka, Osaka 560 (JP)
On higher genus Riemann surfaces, this paper defines a primary field for affine algebra and vacuum with the use of the prescription by global operator formalism proposed by Krichever and Novikov. From the analytic viewpoint, the Ward-Takahashi identity for current insertion and a partial differential equation for correlators of primary fields are derived.
- OSTI ID:
- 5310022
- Journal Information:
- Modern Physics Letters A; (United States), Journal Name: Modern Physics Letters A; (United States) Vol. 5:27; ISSN 0217-7323; ISSN MPLAE
- Country of Publication:
- United States
- Language:
- English
Similar Records
A Global Operator Approach to Wess-Zumino-Novikov-Witten models
Geometrical quantization of bosonic string with Wess-Zumino term on genus- g Riemann surface
Ward Identities and Characters of Kac-Moody Algebras
Journal Article
·
Tue Nov 13 23:00:00 EST 2007
· AIP Conference Proceedings
·
OSTI ID:21039279
Geometrical quantization of bosonic string with Wess-Zumino term on genus- g Riemann surface
Journal Article
·
Sun Jan 14 23:00:00 EST 1990
· Physical Review, D (Particles Fields); (USA)
·
OSTI ID:7162336
Ward Identities and Characters of Kac-Moody Algebras
Journal Article
·
Tue Oct 31 23:00:00 EST 1989
· J.Phys.A
·
OSTI ID:2997675