skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regulation of ATP-sensitive K sup + channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP

Abstract

The actions of somatostatin and of the phorbol ester 4{beta}-phorbol 12-myristate 13-acetate (PMA) were studied in rat insulinoma (RINm5F) cells by electrophysiological and {sup 86}Rb{sup +} flux techniques. Both PMA and somatostatin hyperpolarize insulinoma cells by activating ATP-sensitive K{sup +} channels. The presence of intracellular GTP is required for the somatostatin effects. PMA- and somatostatin-induced hyperpolarization and channel activity are inhibited by the sulfonylurea glibenclamide. Glibenclamide-sensitive {sup 86}Rb{sup +} efflux from insulinoma cells is stimulated by somatostatin in a dose-dependent manner (half maximal effect at 0.7 nM) and abolished by pertussis toxin pretreatment. Mutual roles of a GTP-binding protein, of protein kinase C, and of cAMP in the regulation of ATP-sensitive K{sup +} channels are discussed.

Authors:
; ; ;  [1]
  1. (Centre de Biochimie du Centre National de la Recherche Scientifique, Nice (France))
Publication Date:
OSTI Identifier:
5300376
Resource Type:
Journal Article
Resource Relation:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America; (USA); Journal Volume: 86:8
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; MEMBRANE TRANSPORT; PHYSIOLOGY; PHORBOL ESTERS; BIOLOGICAL EFFECTS; RUBIDIUM 86; UPTAKE; SOMATOSTATIN; AMP; ATP; PHOSPHOTRANSFERASES; POTASSIUM COMPOUNDS; RATS; TUMOR CELLS; ALKALI METAL COMPOUNDS; ALKALI METAL ISOTOPES; ANIMAL CELLS; ANIMALS; BETA DECAY RADIOISOTOPES; BETA-MINUS DECAY RADIOISOTOPES; CARCINOGENS; DAYS LIVING RADIOISOTOPES; ENZYMES; ESTERS; INTERMEDIATE MASS NUCLEI; ISOMERIC TRANSITION ISOTOPES; ISOTOPES; MAMMALS; MINUTES LIVING RADIOISOTOPES; NUCLEI; NUCLEOTIDES; ODD-ODD NUCLEI; ORGANIC COMPOUNDS; PHOSPHORUS-GROUP TRANSFERASES; RADIOISOTOPES; RODENTS; RUBIDIUM ISOTOPES; TRANSFERASES; VERTEBRATES; 550201* - Biochemistry- Tracer Techniques

Citation Formats

De Weille, J.R., Schmid-Antomarchi, H., Fosset, M., and Lazdunski, M.. Regulation of ATP-sensitive K sup + channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP. United States: N. p., 1989. Web. doi:10.1073/pnas.86.8.2971.
De Weille, J.R., Schmid-Antomarchi, H., Fosset, M., & Lazdunski, M.. Regulation of ATP-sensitive K sup + channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP. United States. doi:10.1073/pnas.86.8.2971.
De Weille, J.R., Schmid-Antomarchi, H., Fosset, M., and Lazdunski, M.. 1989. "Regulation of ATP-sensitive K sup + channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP". United States. doi:10.1073/pnas.86.8.2971.
@article{osti_5300376,
title = {Regulation of ATP-sensitive K sup + channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP},
author = {De Weille, J.R. and Schmid-Antomarchi, H. and Fosset, M. and Lazdunski, M.},
abstractNote = {The actions of somatostatin and of the phorbol ester 4{beta}-phorbol 12-myristate 13-acetate (PMA) were studied in rat insulinoma (RINm5F) cells by electrophysiological and {sup 86}Rb{sup +} flux techniques. Both PMA and somatostatin hyperpolarize insulinoma cells by activating ATP-sensitive K{sup +} channels. The presence of intracellular GTP is required for the somatostatin effects. PMA- and somatostatin-induced hyperpolarization and channel activity are inhibited by the sulfonylurea glibenclamide. Glibenclamide-sensitive {sup 86}Rb{sup +} efflux from insulinoma cells is stimulated by somatostatin in a dose-dependent manner (half maximal effect at 0.7 nM) and abolished by pertussis toxin pretreatment. Mutual roles of a GTP-binding protein, of protein kinase C, and of cAMP in the regulation of ATP-sensitive K{sup +} channels are discussed.},
doi = {10.1073/pnas.86.8.2971},
journal = {Proceedings of the National Academy of Sciences of the United States of America; (USA)},
number = ,
volume = 86:8,
place = {United States},
year = 1989,
month = 4
}
  • ADH, acting through cAMP, increases the potassium conductance of apical membranes of mouse medullary thick ascending limbs of Henle. The present studies tested whether exposure of renal medullary apical membranes in vitro to the catalytic subunit of cAMP-dependent protein kinase resulted in an increase in potassium conductance. Apical membrane vesicles prepared from rabbit outer renal medulla demonstrated bumetanide- and chloride-sensitive {sup 22}Na+ uptake and barium-sensitive, voltage-dependent {sup 86}Rb+ influx. When vesicles were loaded with purified catalytic subunit of cAMP-dependent protein kinase (150 mU/ml), 1 mM ATP, and 50 mM KCl, the barium-sensitive {sup 86}Rb+ influx increased from 361 {plus minus}more » 138 to 528 {plus minus} 120 pM/mg prot.30 sec (P less than 0.01). This increase was inhibited completely when heat-stable protein kinase inhibitor (1 microgram/ml) was also present in the vesicle solutions. The stimulation of {sup 86}Rb+ uptake by protein kinase required ATP rather than ADP. It also required opening of the vesicles by hypotonic shock, presumably to allow the kinase free access to the cytoplasmic face of the membranes. We conclude that cAMP-dependent protein kinase-mediated phosphorylation of apical membranes from the renal medulla increases the potassium conductance of these membranes. This mechanism may account for the ADH-mediated increase in potassium conductance in the mouse mTALH.« less
  • Cloned muscarinic acetylcholine m1 and m2 receptors were expressed in stably transfected mouse Y1 adrenal cells and in a variant Y1 line, Kin-8, which is deficient in cAMP-dependent protein kinase activity (PKA{sup {minus}}). m1 and m2 receptors were rapidly internalized following exposure of transfected PKA{sup +} or PKA{sup {minus}} cells to the muscarinic agonist carbachol. Thus, agonist-dependent internalization of m1 and m2 did not require PKA activity. A differential effect of PKA on regulation by agonist of the m2 receptor, but not the m1 receptor, was unmasked in PKA{sup {minus}} cells. These data indicate that the basal activity of PKAmore » may modulate the agonist-dependent internalization of the m2 receptor, but not the m1 receptor. The internalization of the m1 and m2 receptors in both PKA{sup +} and PKA{sup {minus}} cells was accompanied by desensitization of functional responses. Exposure of PKA{sup +} cells to 10{sup {minus}7} M phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, resulted in a 30 {plus minus} 9% decrease in the number of m1 receptors on the cell surface. The m2 receptor was not internalized following treatment of either PKA{sup +} or PKA{sup {minus}} cells with PMA. Thus, the m1 and m2 receptors show differential sensitivity to internalization by PMA. Agonist-dependent internalization of the m1 receptor appeared to be independent of activation of PKC because (1) agonist-dependent internalization of m1 was not attenuated in PKA{sup {minus}} cells, (2) the rate and extent of internalization of m1 in cells exposed to PMA were less than those in cells exposed to agonist, and (3) treatment of cells with concanavalin A selectivity blocked internalization of m1 in cells exposed to PMA, but not to agonist. The effects of agonist and PMA on receptor internalization were not additive. Exposure of PKA{sup +} or PKA{sup {minus}} cells to PMA reduced the magnitude of pilocarpine-stimulated PI hydrolysis by about 25%.« less
  • Vasoactive intestinal peptide synergistically stimulated initiation of DNA synthesis in Swiss 3T3 cells. The peptide stimulated ({sup 3}H)thymidine incorporation in the presence of insulin and either forskolin or an inhibitor of cAMP phosphodiesterase in a concentration-dependent manner. Half-maximal effect was obtained at 1 nM. At mitogenic concentrations, VIP stimulated a marked accumulation (eightfold) of cAMP. In contrast to other growth-promoting neuropeptides, VIP did not induce an increase in cytosolic free Ca{sup 2+} or the activation of protein kinase C. The authors conclude that neuropeptides can modulate long-term cell proliferation through multiple signaling pathways.
  • The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent withmore » increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury. • PKA signaling pathway is involved downstream of cAMP. • Transcriptional MRP2 regulation ultimately involved participation of c-JUN and ATF2.« less
  • We measured the synthesis of diacylglycerol de novo in normal NIH/3T3 fibroblasts and in cells transformed by ras, src, sis and abl oncogenes. Analysis of the incorporation of glucose-derived {sup 14}C into diacylglycerol indicated that neosynthesis of diacylglycerol was constitutively active in the transformed cell lines. Elevated levels of diacylglycerol and persistent activation/down-regulation of protein kinase C reduced the binding of phorbol dibutyrate to transformed cells. This phenomenon could be reversed by blocking the glycolytic pathway, thus indicating that neosynthesized diacylglycerol was responsible for persistent activation and down-regulation of protein kinase C. In transformed cells, protein kinase C activity couldmore » not be stimulated by the addition of diolein; however, inhibition of glycolysis restored the ability of transformed cells to respond to diolein. Taken together these data indicate that constitutive synthesis of diacylglycerol de novo is responsible for activation and down-regulation of protein kinase C in transformed cells, and it may play a role in altered mitogenic signalling.« less