Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Solid breeder blanket option for the ITER conceptual design

Conference ·
OSTI ID:5292473

A solid-breeder water-cooled blanket option was developed for ITER based on a multilayer configuration. The blanket uses beryllium for neutron multiplication and lithium oxide for tritium breeding. The material forms are sintered products for both material with 0.8 density factor. The lithium-6 enrichment is 90%. This blanket has the capability to accommodate a factor of two change in the neutron wall loading without violating the different design guidelines. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. At the same time, the reliability and the safety aspects of the blanket are enhanced by the use of a low-pressure coolant and the separation of the tritium purge lines from the coolant system. The blanket modules are made by hot vacuum forming and diffusion bonding a double wall structure with integral cooling channels. The different aspects of the blanket design including tritium breeding, nuclear heat deposition, activation analyses, thermal-hydraulics, tritium inventory, structural analyses, and water coolant conditions are summarized in this paper. 12 refs., 2 figs., 1 tab.

Research Organization:
Argonne National Lab., IL (USA)
Sponsoring Organization:
DOE/ER
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
5292473
Report Number(s):
CONF-891007-98; ON: DE90003769
Country of Publication:
United States
Language:
English