skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reactor static optimization with integral system equations. [CITATION Code]

Thesis/Dissertation ·
OSTI ID:5276184

An algorithm is developed for the optimality analysis of thermal reactor assemblies with a mathematical programming method. The neutron balances of the systems under consideration are transformed into integral equations by using Green's functions. Two-group, two-dimensional Green's functions for the neutron diffusion equations have been derived. A nodal method has been used to transform integral system equations into equivalent matrix eigenvalue problems. A benchmark problem solved with both the nodal method and a finite difference code ''CITATION'' establishes the validity of the integral system equations. Possible ways of improving computed results are discussed. Only 50 mesh points are required in nodal method to obtain one percent error in the eigenvalue in the benchmark calculation. The same accuracy requires 2500 mesh points in the ''CITATION'' code. With the nodal method described above, a two-dimensional maximum power problem for a thermal reactor is solved by treating the fissile material concentration as the controller. Two numerical examples are given.

Research Organization:
Illinois Univ., Urbana (USA)
OSTI ID:
5276184
Resource Relation:
Other Information: Thesis (Ph.D.)
Country of Publication:
United States
Language:
English